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Preface

This book is a general introduction to machine learning that can serve as a textbook
for students and researchers in the field. It covers fundamental modern topics in
machine learning while providing the theoretical basis and conceptual tools needed
for the discussion and justification of algorithms. It also describes several key aspects
of the application of these algorithms.

We have aimed to present the most novel theoretical tools and concepts while
giving concise proofs, even for relatively advanced results. In general, whenever
possible, we have chosen to favor succinctness. Nevertheless, we discuss some crucial
complex topics arising in machine learning and highlight several open research
questions. Certain topics often merged with others or treated with insufficient
attention are discussed separately here and with more emphasis: for example, a
different chapter is reserved for multi-class classification, ranking, and regression.

Although we cover a very wide variety of important topics in machine learning, we
have chosen to omit a few important ones, including graphical models and neural
networks, both for the sake of brevity and because of the current lack of solid
theoretical guarantees for some methods.

The book is intended for students and researchers in machine learning, statistics
and other related areas. It can be used as a textbook for both graduate and advanced
undergraduate classes in machine learning or as a reference text for a research
seminar. The first three chapters of the book lay the theoretical foundation for the
subsequent material. Other chapters are mostly self-contained, with the exception
of chapter 5 which introduces some concepts that are extensively used in later
ones. Each chapter concludes with a series of exercises, with full solutions presented
separately.

The reader is assumed to be familiar with basic concepts in linear algebra,
probability, and analysis of algorithms. However, to further help him, we present
in the appendix a concise linear algebra and a probability review, and a short
introduction to convex optimization. We have also collected in the appendix a
number of useful tools for concentration bounds used in this book.

To our knowledge, there is no single textbook covering all of the material
presented here. The need for a unified presentation has been pointed out to us
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every year by our machine learning students. There are several good books for
various specialized areas, but these books do not include a discussion of other
fundamental topics in a general manner. For example, books about kernel methods
do not include a discussion of other fundamental topics such as boosting, ranking,
reinforcement learning, learning automata or online learning. There also exist more
general machine learning books, but the theoretical foundation of our book and our
emphasis on proofs make our presentation quite distinct.

Most of the material presented here takes its origins in a machine learning
graduate course (Foundations of Machine Learning) taught by the first author
at the Courant Institute of Mathematical Sciences in New York University over
the last seven years. This book has considerably benefited from the comments
and suggestions from students in these classes, along with those of many friends,
colleagues and researchers to whom we are deeply indebted.

We are particularly grateful to Corinna Cortes and Yishay Mansour who have
both made a number of key suggestions for the design and organization of the
material presented with detailed comments that we have fully taken into account
and that have greatly improved the presentation. We are also grateful to Yishay
Mansour for using a preliminary version of the book for teaching and for reporting
his feedback to us.

We also thank for discussions, suggested improvement, and contributions of many
kinds the following colleagues and friends from academic and corporate research lab-
oratories: Cyril Allauzen, Stephen Boyd, Spencer Greenberg, Lisa Hellerstein, Sanjiv
Kumar, Ryan McDonald, Andres Muñoz Medina, Tyler Neylon, Peter Norvig, Fer-
nando Pereira, Maria Pershina, Ashish Rastogi, Michael Riley, Umar Syed, Csaba
Szepesvári, Eugene Weinstein, and Jason Weston.

Finally, we thank the MIT Press publication team for their help and support in
the development of this text.



1 Introduction

Machine learning can be broadly defined as computational methods using experience
to improve performance or to make accurate predictions. Here, experience refers to
the past information available to the learner, which typically takes the form of
electronic data collected and made available for analysis. This data could be in the
form of digitized human-labeled training sets, or other types of information obtained
via interaction with the environment. In all cases, its quality and size are crucial to
the success of the predictions made by the learner.

Machine learning consists of designing efficient and accurate prediction algo-
rithms. As in other areas of computer science, some critical measures of the quality
of these algorithms are their time and space complexity. But, in machine learning,
we will need additionally a notion of sample complexity to evaluate the sample size
required for the algorithm to learn a family of concepts. More generally, theoreti-
cal learning guarantees for an algorithm depend on the complexity of the concept
classes considered and the size of the training sample.

Since the success of a learning algorithm depends on the data used, machine
learning is inherently related to data analysis and statistics. More generally, learning
techniques are data-driven methods combining fundamental concepts in computer
science with ideas from statistics, probability and optimization.

1.1 Applications and problems

Learning algorithms have been successfully deployed in a variety of applications,
including

Text or document classification, e.g., spam detection;

Natural language processing, e.g., morphological analysis, part-of-speech tagging,
statistical parsing, named-entity recognition;

Speech recognition, speech synthesis, speaker verification;

Optical character recognition (OCR);

Computational biology applications, e.g., protein function or structured predic-



2 Introduction

tion;

Computer vision tasks, e.g., image recognition, face detection;

Fraud detection (credit card, telephone) and network intrusion;

Games, e.g., chess, backgammon;

Unassisted vehicle control (robots, navigation);

Medical diagnosis;

Recommendation systems, search engines, information extraction systems.

This list is by no means comprehensive, and learning algorithms are applied to new
applications every day. Moreover, such applications correspond to a wide variety of
learning problems. Some major classes of learning problems are:

Classification: Assign a category to each item. For example, document classifica-
tion may assign items with categories such as politics, business, sports, or weather
while image classification may assign items with categories such as landscape, por-
trait, or animal. The number of categories in such tasks is often relatively small,
but can be large in some difficult tasks and even unbounded as in OCR, text clas-
sification, or speech recognition.

Regression: Predict a real value for each item. Examples of regression include
prediction of stock values or variations of economic variables. In this problem, the
penalty for an incorrect prediction depends on the magnitude of the difference
between the true and predicted values, in contrast with the classification problem,
where there is typically no notion of closeness between various categories.

Ranking : Order items according to some criterion. Web search, e.g., returning
web pages relevant to a search query, is the canonical ranking example. Many other
similar ranking problems arise in the context of the design of information extraction
or natural language processing systems.

Clustering : Partition items into homogeneous regions. Clustering is often per-
formed to analyze very large data sets. For example, in the context of social net-
work analysis, clustering algorithms attempt to identify “communities” within large
groups of people.

Dimensionality reduction or manifold learning : Transform an initial representa-
tion of items into a lower-dimensional representation of these items while preserving
some properties of the initial representation. A common example involves prepro-
cessing digital images in computer vision tasks.

The main practical objectives of machine learning consist of generating accurate
predictions for unseen items and of designing efficient and robust algorithms to
produce these predictions, even for large-scale problems. To do so, a number of
algorithmic and theoretical questions arise. Some fundamental questions include:
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Figure 1.1 The zig-zag line on the left panel is consistent over the blue and red
training sample, but it is a complex separation surface that is not likely to generalize
well to unseen data. In contrast, the decision surface on the right panel is simpler
and might generalize better in spite of its misclassification of a few points of the
training sample.

Which concept families can actually be learned, and under what conditions? How
well can these concepts be learned computationally?

1.2 Definitions and terminology

We will use the canonical problem of spam detection as a running example to
illustrate some basic definitions and to describe the use and evaluation of machine
learning algorithms in practice. Spam detection is the problem of learning to
automatically classify email messages as either spam or non-spam.

Examples: Items or instances of data used for learning or evaluation. In our spam
problem, these examples correspond to the collection of email messages we will use
for learning and testing.

Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the header,
the presence of certain keywords in the body of the message, and so on.

Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the spam and non-spam

categories in our binary classification problem. In regression, items are assigned
real-valued labels.

Training sample: Examples used to train a learning algorithm. In our spam
problem, the training sample consists of a set of email examples along with their
associated labels. The training sample varies for different learning scenarios, as
described in section 1.4.

Validation sample: Examples used to tune the parameters of a learning algorithm
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when working with labeled data. Learning algorithms typically have one or more
free parameters, and the validation sample is used to select appropriate values for
these model parameters.

Test sample: Examples used to evaluate the performance of a learning algorithm.
The test sample is separate from the training and validation data and is not made
available in the learning stage. In the spam problem, the test sample consists of a
collection of email examples for which the learning algorithm must predict labels
based on features. These predictions are then compared with the labels of the test
sample to measure the performance of the algorithm.

Loss function: A function that measures the difference, or loss, between a pre-
dicted label and a true label. Denoting the set of all labels as Y and the set of
possible predictions as Y ′, a loss function L is a mapping L : Y ×Y ′ → R+. In most
cases, Y ′ = Y and the loss function is bounded, but these conditions do not always
hold. Common examples of loss functions include the zero-one (or misclassification)
loss defined over {−1, +1} × {−1, +1} by L(y, y′) = 1y′ �=y and the squared loss
defined over I × I by L(y, y′) = (y′ − y)2, where I ⊆ R is typically a bounded
interval.

Hypothesis set : A set of functions mapping features (feature vectors) to the set of
labels Y. In our example, these may be a set of functions mapping email features
to Y = {spam, non-spam}. More generally, hypotheses may be functions mapping
features to a different set Y ′. They could be linear functions mapping email feature
vectors to real numbers interpreted as scores (Y ′ = R), with higher score values
more indicative of spam than lower ones.

We now define the learning stages of our spam problem. We start with a given
collection of labeled examples. We first randomly partition the data into a training
sample, a validation sample, and a test sample. The size of each of these samples
depends on a number of different considerations. For example, the amount of data
reserved for validation depends on the number of free parameters of the algorithm.
Also, when the labeled sample is relatively small, the amount of training data is
often chosen to be larger than that of test data since the learning performance
directly depends on the training sample.

Next, we associate relevant features to the examples. This is a critical step in
the design of machine learning solutions. Useful features can effectively guide the
learning algorithm, while poor or uninformative ones can be misleading. Although
it is critical, to a large extent, the choice of the features is left to the user. This
choice reflects the user’s prior knowledge about the learning task which in practice
can have a dramatic effect on the performance results.

Now, we use the features selected to train our learning algorithm by fixing different
values of its free parameters. For each value of these parameters, the algorithm
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selects a different hypothesis out of the hypothesis set. We choose among them
the hypothesis resulting in the best performance on the validation sample. Finally,
using that hypothesis, we predict the labels of the examples in the test sample. The
performance of the algorithm is evaluated by using the loss function associated to
the task, e.g., the zero-one loss in our spam detection task, to compare the predicted
and true labels.

Thus, the performance of an algorithm is of course evaluated based on its test error
and not its error on the training sample. A learning algorithm may be consistent ,
that is it may commit no error on the examples of the training data, and yet
have a poor performance on the test data. This occurs for consistent learners
defined by very complex decision surfaces, as illustrated in figure 1.1, which tend
to memorize a relatively small training sample instead of seeking to generalize well.
This highlights the key distinction between memorization and generalization, which
is the fundamental property sought for an accurate learning algorithm. Theoretical
guarantees for consistent learners will be discussed with great detail in chapter 2.

1.3 Cross-validation

In practice, the amount of labeled data available is often too small to set aside
a validation sample since that would leave an insufficient amount of training data.
Instead, a widely adopted method known as n-fold cross-validation is used to exploit
the labeled data both for model selection (selection of the free parameters of the
algorithm) and for training.

Let θ denote the vector of free parameters of the algorithm. For a fixed value
of θ, the method consists of first randomly partitioning a given sample S of
m labeled examples into n subsamples, or folds. The ith fold is thus a labeled
sample ((xi1, yi1), . . . , (ximi , yimi)) of size mi. Then, for any i ∈ [1, n], the learning
algorithm is trained on all but the ith fold to generate a hypothesis hi, and the
performance of hi is tested on the ith fold, as illustrated in figure 1.2a. The
parameter value θ is evaluated based on the average error of the hypotheses hi,
which is called the cross-validation error . This quantity is denoted by R̂CV(θ) and
defined by

R̂CV(θ) =
1
n

n∑
i=1

1
mi

mi∑
j=1

L(hi(xij), yij)︸ ︷︷ ︸
error of hi on the ith fold

.

The folds are generally chosen to have equal size, that is mi = m/n for all i ∈ [1, n].
How should n be chosen? The appropriate choice is subject to a trade-off and the
topic of much learning theory research that we cannot address in this introductory
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Figure 1.2 n-fold cross validation. (a) Illustration of the partitioning of the
training data into 5 folds. (b) Typical plot of a classifier’s prediction error as a
function of the size of the training sample: the error decreases as a function of the
number of training points.

chapter. For a large n, each training sample used in n-fold cross-validation has size
m−m/n = m(1−1/n) (illustrated by the right vertical red line in figure 1.2b), which
is close to m, the size of the full sample, but the training samples are quite similar.
Thus, the method tends to have a small bias but a large variance. In contrast,
smaller values of n lead to more diverse training samples but their size (shown by
the left vertical red line in figure 1.2b) is significantly less than m, thus the method
tends to have a smaller variance but a larger bias.

In machine learning applications, n is typically chosen to be 5 or 10. n-fold cross
validation is used as follows in model selection. The full labeled data is first split
into a training and a test sample. The training sample of size m is then used to
compute the n-fold cross-validation error R̂CV(θ) for a small number of possible
values of θ. θ is next set to the value θ0 for which R̂CV(θ) is smallest and the
algorithm is trained with the parameter setting θ0 over the full training sample of
size m. Its performance is evaluated on the test sample as already described in the
previous section.

The special case of n-fold cross validation where n = m is called leave-one-out
cross-validation, since at each iteration exactly one instance is left out of the training
sample. As shown in chapter 4, the average leave-one-out error is an approximately
unbiased estimate of the average error of an algorithm and can be used to derive
simple guarantees for some algorithms. In general, the leave-one-out error is very
costly to compute, since it requires training n times on samples of size m − 1, but
for some algorithms it admits a very efficient computation (see exercise 10.9).

In addition to model selection, n-fold cross validation is also commonly used for
performance evaluation. In that case, for a fixed parameter setting θ, the full labeled
sample is divided into n random folds with no distinction between training and test
samples. The performance reported is the n-fold cross-validation on the full sample
as well as the standard deviation of the errors measured on each fold.



1.4 Learning scenarios 7

1.4 Learning scenarios

We next briefly describe common machine learning scenarios. These scenarios differ
in the types of training data available to the learner, the order and method by which
training data is received and the test data used to evaluate the learning algorithm.

Supervised learning : The learner receives a set of labeled examples as training
data and makes predictions for all unseen points. This is the most common scenario
associated with classification, regression, and ranking problems. The spam detection
problem discussed in the previous section is an instance of supervised learning.

Unsupervised learning : The learner exclusively receives unlabeled training data,
and makes predictions for all unseen points. Since in general no labeled exam-
ple is available in that setting, it can be difficult to quantitatively evaluate the
performance of a learner. Clustering and dimensionality reduction are example of
unsupervised learning problems.

Semi-supervised learning : The learner receives a training sample consisting of
both labeled and unlabeled data, and makes predictions for all unseen points. Semi-
supervised learning is common in settings where unlabeled data is easily accessible
but labels are expensive to obtain. Various types of problems arising in applications,
including classification, regression, or ranking tasks, can be framed as instances
of semi-supervised learning. The hope is that the distribution of unlabeled data
accessible to the learner can help him achieve a better performance than in the
supervised setting. The analysis of the conditions under which this can indeed
be realized is the topic of much modern theoretical and applied machine learning
research.

Transductive inference: As in the semi-supervised scenario, the learner receives
a labeled training sample along with a set of unlabeled test points. However, the
objective of transductive inference is to predict labels only for these particular test
points. Transductive inference appears to be an easier task and matches the scenario
encountered in a variety of modern applications. However, as in the semi-supervised
setting, the assumptions under which a better performance can be achieved in this
setting are research questions that have not been fully resolved.

On-line learning : In contrast with the previous scenarios, the online scenario
involves multiple rounds and training and testing phases are intermixed. At each
round, the learner receives an unlabeled training point, makes a prediction, receives
the true label, and incurs a loss. The objective in the on-line setting is to minimize
the cumulative loss over all rounds. Unlike the previous settings just discussed, no
distributional assumption is made in on-line learning. In fact, instances and their
labels may be chosen adversarially within this scenario.
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Reinforcement learning : The training and testing phases are also intermixed in
reinforcement learning. To collect information, the learner actively interacts with the
environment and in some cases affects the environment, and receives an immediate
reward for each action. The object of the learner is to maximize his reward over
a course of actions and iterations with the environment. However, no long-term
reward feedback is provided by the environment, and the learner is faced with the
exploration versus exploitation dilemma, since he must choose between exploring
unknown actions to gain more information versus exploiting the information already
collected.

Active learning : The learner adaptively or interactively collects training examples,
typically by querying an oracle to request labels for new points. The goal in
active learning is to achieve a performance comparable to the standard supervised
learning scenario, but with fewer labeled examples. Active learning is often used
in applications where labels are expensive to obtain, for example computational
biology applications.

In practice, many other intermediate and somewhat more complex learning scenarios
may be encountered.

1.5 Outline

This book presents several fundamental and mathematically well-studied algo-
rithms. It discusses in depth their theoretical foundations as well as their practical
applications. The topics covered include:

Probably approximately correct (PAC) learning framework; learning guarantees
for finite hypothesis sets;

Learning guarantees for infinite hypothesis sets, Rademacher complexity, VC-
dimension;

Support vector machines (SVMs), margin theory;

Kernel methods, positive definite symmetric kernels, representer theorem, rational
kernels;

Boosting, analysis of empirical error, generalization error, margin bounds;

Online learning, mistake bounds, the weighted majority algorithm, the exponen-
tial weighted average algorithm, the Perceptron and Winnow algorithms;

Multi-class classification, multi-class SVMs, multi-class boosting, one-versus-all,
one-versus-one, error-correction methods;

Ranking, ranking with SVMs, RankBoost, bipartite ranking, preference-based
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ranking;

Regression, linear regression, kernel ridge regression, support vector regression,
Lasso;

Stability-based analysis, applications to classification and regression;

Dimensionality reduction, principal component analysis (PCA), kernel PCA,
Johnson-Lindenstrauss lemma;

Learning automata and languages;

Reinforcement learning, Markov decision processes, planning and learning prob-
lems.

The analyses in this book are self-contained, with relevant mathematical concepts
related to linear algebra, convex optimization, probability and statistics included in
the appendix.





2 The PAC Learning Framework

Several fundamental questions arise when designing and analyzing algorithms that
learn from examples: What can be learned efficiently? What is inherently hard to
learn? How many examples are needed to learn successfully? Is there a general model
of learning? In this chapter, we begin to formalize and address these questions by
introducing the Probably Approximately Correct (PAC) learning framework. The
PAC framework helps define the class of learnable concepts in terms of the number
of sample points needed to achieve an approximate solution, sample complexity , and
the time and space complexity of the learning algorithm, which depends on the cost
of the computational representation of the concepts.

We first describe the PAC framework and illustrate it, then present some general
learning guarantees within this framework when the hypothesis set used is finite,
both for the consistent case where the hypothesis set used contains the concept to
learn and for the opposite inconsistent case.

2.1 The PAC learning model

We first introduce several definitions and the notation needed to present the PAC
model, which will also be used throughout much of this book.

We denote by X the set of all possible examples or instances. X is also sometimes
referred to as the input space. The set of all possible labels or target values is denoted
by Y. For the purpose of this introductory chapter, we will limit ourselves to the
case where Y is reduced to two labels, Y = {0, 1}, so-called binary classification.
Later chapters will extend these results to more general settings.

A concept c : X → Y is a mapping from X to Y. Since Y = {0, 1}, we can identify
c with the subset of X over which it takes the value 1. Thus, in the following, we
equivalently refer to a concept to learn as a mapping from X to {0, 1}, or to a
subset of X . As an example, a concept may be the set of points inside a triangle or
the indicator function of these points. In such cases, we will say in short that the
concept to learn is a triangle. A concept class is a set of concepts we may wish to
learn and is denoted by C. This could, for example, be the set of all triangles in the
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plane.
We assume that examples are independently and identically distributed (i.i.d.)

according to some fixed but unknown distribution D. The learning problem is then
formulated as follows. The learner considers a fixed set of possible concepts H,
called a hypothesis set , which may not coincide with C. He receives a sample
S = (x1, . . . , xm) drawn i.i.d. according to D as well as the labels (c(x1), . . . , c(xm)),
which are based on a specific target concept c ∈ C to learn. His task is to use the
labeled sample S to select a hypothesis hS ∈ H that has a small generalization
error with respect to the concept c. The generalization error of a hypothesis h ∈ H,
also referred to as the true error or just error of h is denoted by R(h) and defined
as follows.1

Definition 2.1 Generalization error
Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying distribution
D, the generalization error or risk of h is defined by

R(h) = Pr
x∼D

[h(x) �= c(x)] = E
x∼D

[
1h(x) �=c(x)

]
, (2.1)

where 1ω is the indicator function of the event ω.2

The generalization error of a hypothesis is not directly accessible to the learner
since both the distribution D and the target concept c are unknown. However, the
learner can measure the empirical error of a hypothesis on the labeled sample S.

Definition 2.2 Empirical error
Given a hypothesis h ∈ H, a target concept c ∈ C, and a sample S = (x1, . . . , xm),
the empirical error or empirical risk of h is defined by

R̂(h) =
1
m

m∑
i=1

1h(xi) �=c(xi). (2.2)

Thus, the empirical error of h ∈ H is its average error over the sample S, while the
generalization error is its expected error based on the distribution D. We will see in
this chapter and the following chapters a number of guarantees relating to these two
quantities with high probability, under some general assumptions. We can already
note that for a fixed h ∈ H, the expectation of the empirical error based on an i.i.d.

1. The choice of R instead of E to denote an error avoids possible confusions with the
notation for expectations and is further justified by the fact that the term risk is also used
in machine learning and statistics to refer to an error.
2. For this and other related definitions, the family of functions H and the target concept
c must be measurable. The function classes we consider in this book all have this property.
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sample S is equal to the generalization error:

E[R̂(h)] = R(h). (2.3)

Indeed, by the linearity of the expectation and the fact that the sample is drawn
i.i.d., we can write

E
S∼Dm

[R̂(h)] =
1
m

m∑
i=1

E
S∼Dm

[1h(xi) �=c(xi)] =
1
m

m∑
i=1

E
S∼Dm

[1h(x) �=c(x)],

for any x in sample S. Thus,

E
S∼Dm

[R̂(h)] = E
S∼Dm

[1{h(x) �=c(x)}] = E
x∼D

[1{h(x) �=c(x)}] = R(h).

The following introduces the Probably Approximately Correct (PAC) learning
framework. We denote by O(n) an upper bound on the cost of the computational
representation of any element x ∈ X and by size(c) the maximal cost of the
computational representation of c ∈ C. For example, x may be a vector in R

n,
for which the cost of an array-based representation would be in O(n).

Definition 2.3 PAC-learning
A concept class C is said to be PAC-learnable if there exists an algorithm A and
a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0, for all
distributions D on X and for any target concept c ∈ C, the following holds for any
sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

Pr
S∼Dm

[R(hS) ≤ ε] ≥ 1 − δ. (2.4)

If A further runs in poly(1/ε, 1/δ, n, size(c)), then C is said to be efficiently PAC-
learnable. When such an algorithm A exists, it is called a PAC-learning algorithm
for C.

A concept class C is thus PAC-learnable if the hypothesis returned by the algorithm
after observing a number of points polynomial in 1/ε and 1/δ is approximately
correct (error at most ε) with high probability (at least 1 − δ), which justifies the
PAC terminology. δ > 0 is used to define the confidence 1−δ and ε > 0 the accuracy
1 − ε. Note that if the running time of the algorithm is polynomial in 1/ε and 1/δ,
then the sample size m must also be polynomial if the full sample is received by the
algorithm.

Several key points of the PAC definition are worth emphasizing. First, the PAC
framework is a distribution-free model : no particular assumption is made about the
distribution D from which examples are drawn. Second, the training sample and the
test examples used to define the error are drawn according to the same distribution
D. This is a necessary assumption for generalization to be possible in most cases.
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R

R’

Figure 2.1 Target concept R and possible hypothesis R′. Circles represent training
instances. A blue circle is a point labeled with 1, since it falls within the rectangle
R. Others are red and labeled with 0.

Finally, the PAC framework deals with the question of learnability for a concept
class C and not a particular concept. Note that the concept class C is known to the
algorithm, but of course target concept c ∈ C is unknown.

In many cases, in particular when the computational representation of the con-
cepts is not explicitly discussed or is straightforward, we may omit the polynomial
dependency on n and size(c) in the PAC definition and focus only on the sample
complexity.

We now illustrate PAC-learning with a specific learning problem.

Example 2.1 Learning axis-aligned rectangles

Consider the case where the set of instances are points in the plane, X = R
2, and

the concept class C is the set of all axis-aligned rectangles lying in R
2. Thus, each

concept c is the set of points inside a particular axis-aligned rectangle. The learning
problem consists of determining with small error a target axis-aligned rectangle
using the labeled training sample. We will show that the concept class of axis-
aligned rectangles is PAC-learnable.

Figure 2.1 illustrates the problem. R represents a target axis-aligned rectangle
and R′ a hypothesis. As can be seen from the figure, the error regions of R′ are
formed by the area within the rectangle R but outside the rectangle R′ and the area
within R′ but outside the rectangle R. The first area corresponds to false negatives,
that is, points that are labeled as 0 or negatively by R′, which are in fact positive
or labeled with 1. The second area corresponds to false positives, that is, points
labeled positively by R′ which are in fact negatively labeled.

To show that the concept class is PAC-learnable, we describe a simple PAC-
learning algorithm A. Given a labeled sample S, the algorithm consists of returning
the tightest axis-aligned rectangle R′ = RS containing the points labeled with 1.
Figure 2.2 illustrates the hypothesis returned by the algorithm. By definition, RS

does not produce any false positive, since its points must be included in the target
concept R. Thus, the error region of RS is included in R.
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R

R’

Figure 2.2 Illustration of the hypothesis R′ = RS returned by the algorithm.

Let R ∈ C be a target concept. Fix ε > 0. Let Pr[RS] denote the probability mass
of the region defined by RS, that is the probability that a point randomly drawn
according to D falls within RS. Since errors made by our algorithm can be due only
to points falling inside RS, we can assume that Pr[RS] > ε; otherwise, the error of
RS is less than or equal to ε regardless of the training sample S received.

Now, since Pr[RS] > ε, we can define four rectangular regions r1, r2, r3, and r4

along the sides of RS, each with probability at least ε/4. These regions can be
constructed by starting with the empty rectangle along a side and increasing its
size until its distribution mass is at least ε/4. Figure 2.3 illustrates the definition of
these regions.

Observe that if RS meets all of these four regions, then, because it is a rectangle,
it will have one side in each of these four regions (geometric argument). Its error
area, which is the part of R that it does not cover, is thus included in these regions
and cannot have probability mass more than ε. By contraposition, if R(RS) > ε,
then RS must miss at least one of the regions ri, i ∈ [1, 4]. As a result, we can write

Pr
S∼Dm

[R(RS) > ε] ≤ Pr
S∼Dm

[∪4
i=1{RS ∩ ri = ∅}] (2.5)

≤
4∑

i=1

Pr
S∼Dm

[{RS ∩ ri = ∅}] (by the union bound)

≤ 4(1 − ε/4)m (since Pr[ri] > ε/4)

≤ 4 exp(−mε/4),

where for the last step we used the general identity 1 − x ≤ e−x valid for all x ∈ R.
For any δ > 0, to ensure that PrS∼Dm [R(RS) > ε] ≤ δ, we can impose

4 exp(−εm/4) ≤ δ ⇔ m ≥ 4
ε

log
4
δ
. (2.6)

Thus, for any ε > 0 and δ > 0, if the sample size m is greater than 4
ε log 4

δ ,
then PrS∼Dm [R(RS) > ε] ≤ 1 − δ. Furthermore, the computational cost of the
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r1

r2

r3

r4

Figure 2.3 Illustration of the regions r1, . . . , r4.

representation of points in R
2 and axis-aligned rectangles, which can be defined by

their four corners, is constant. This proves that the concept class of axis-aligned
rectangles is PAC-learnable and that the sample complexity of PAC-learning axis-
aligned rectangles is in O( 1

ε log 1
δ ).

An equivalent way to present sample complexity results like (2.6), which we will
often see throughout this book, is to give a generalization bound . It states that with
probability at least 1 − δ, R(RS) is upper bounded by some quantity that depends
on the sample size m and δ. To obtain this, if suffices to set δ to be equal to the
upper bound derived in (2.5), that is δ = 4 exp(−mε/4) and solve for ε. This yields
that with probability at least 1 − δ, the error of the algorithm is bounded as:

R(RS) ≤ 4
m

log
4
δ
. (2.7)

Other PAC-learning algorithms could be considered for this example. One alterna-
tive is to return the largest axis-aligned rectangle not containing the negative points,
for example. The proof of PAC-learning just presented for the tightest axis-aligned
rectangle can be easily adapted to the analysis of other such algorithms.

Note that the hypothesis set H we considered in this example coincided with the
concept class C and that its cardinality was infinite. Nevertheless, the problem
admitted a simple proof of PAC-learning. We may then ask if a similar proof
can readily apply to other similar concept classes. This is not as straightforward
because the specific geometric argument used in the proof is key. It is non-trivial
to extend the proof to other concept classes such as that of non-concentric circles
(see exercise 2.4). Thus, we need a more general proof technique and more general
results. The next two sections provide us with such tools in the case of a finite
hypothesis set.
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2.2 Guarantees for finite hypothesis sets — consistent case

In the example of axis-aligned rectangles that we examined, the hypothesis hS

returned by the algorithm was always consistent , that is, it admitted no error on
the training sample S. In this section, we present a general sample complexity
bound, or equivalently, a generalization bound, for consistent hypotheses, in the
case where the cardinality |H| of the hypothesis set is finite. Since we consider
consistent hypotheses, we will assume that the target concept c is in H.

Theorem 2.1 Learning bounds — finite H, consistent case
Let H be a finite set of functions mapping from X to Y. Let A be an algorithm that
for any target concept c ∈ H and i.i.d. sample S returns a consistent hypothesis hS:
R̂(hS) = 0. Then, for any ε, δ > 0, the inequality PrS∼Dm [R(hS) ≤ ε] ≥ 1 − δ holds
if

m ≥ 1
ε

(
log |H| + log

1
δ

)
. (2.8)

This sample complexity result admits the following equivalent statement as a gener-
alization bound: for any ε, δ > 0, with probability at least 1 − δ,

R(hS) ≤ 1
m

(
log |H| + log

1
δ

)
. (2.9)

Proof Fix ε > 0. We do not know which consistent hypothesis hS ∈ H is selected
by the algorithm A. This hypothesis further depends on the training sample S.
Therefore, we need to give a uniform convergence bound , that is, a bound that
holds for the set of all consistent hypotheses, which a fortiori includes hS . Thus,
we will bound the probability that some h ∈ H would be consistent and have error
more than ε:

Pr[∃h ∈ H : R̂(h) = 0 ∧ R(h) > ε]

= Pr[(h1 ∈ H, R̂(h1) = 0 ∧ R(h1) > ε) ∨ (h2 ∈ H, R̂(h2) = 0 ∧ R(h2) > ε) ∨ · · · ]
≤
∑
h∈H

Pr[R̂(h) = 0 ∧ R(h) > ε] (union bound)

≤
∑
h∈H

Pr[R̂(h) = 0 | R(h) > ε]. (definition of conditional probability)

Now, consider any hypothesis h ∈ H with R(h) > ε. Then, the probability that h

would be consistent on a training sample S drawn i.i.d., that is, that it would have
no error on any point in S, can be bounded as:

Pr[R̂(h) = 0 | R(h) > ε] ≤ (1 − ε)m.
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The previous inequality implies

Pr[∃h ∈ H : R̂(h) = 0 ∧ R(h) > ε] ≤ |H|(1 − ε)m.

Setting the right-hand side to be equal to δ and solving for ε concludes the proof.

The theorem shows that when the hypothesis set H is finite, a consistent algorithm
A is a PAC-learning algorithm, since the sample complexity given by (2.8) is
dominated by a polynomial in 1/ε and 1/δ. As shown by (2.9), the generalization
error of consistent hypotheses is upper bounded by a term that decreases as
a function of the sample size m. This is a general fact: as expected, learning
algorithms benefit from larger labeled training samples. The decrease rate of O(1/m)
guaranteed by this theorem, however, is particularly favorable.

The price to pay for coming up with a consistent algorithm is the use of a
larger hypothesis set H containing target concepts. Of course, the upper bound
(2.9) increases with |H|. However, that dependency is only logarithmic. Note that
the term log |H|, or the related term log2 |H| from which it differs by a constant
factor, can be interpreted as the number of bits needed to represent H. Thus, the
generalization guarantee of the theorem is controlled by the ratio of this number of
bits, log2 |H|, and the sample size m.

We now use theorem 2.1 to analyze PAC-learning with various concept classes.

Example 2.2 Conjunction of Boolean literals

Consider learning the concept class Cn of conjunctions of at most n Boolean literals
x1, . . . , xn. A Boolean literal is either a variable xi, i ∈ [1, n], or its negation xi. For
n = 4, an example is the conjunction: x1 ∧ x2 ∧ x4, where x2 denotes the negation
of the Boolean literal x2. (1, 0, 0, 1) is a positive example for this concept while
(1, 0, 0, 0) is a negative example.

Observe that for n = 4, a positive example (1, 0, 1, 0) implies that the target
concept cannot contain the literals x1 and x3 and that it cannot contain the literals
x2 and x4. In contrast, a negative example is not as informative since it is not
known which of its n bits are incorrect. A simple algorithm for finding a consistent
hypothesis is thus based on positive examples and consists of the following: for each
positive example (b1, . . . , bn) and i ∈ [1, n], if bi = 1 then xi is ruled out as a possible
literal in the concept class and if bi = 0 then xi is ruled out. The conjunction of all
the literals not ruled out is thus a hypothesis consistent with the target. Figure 2.4
shows an example training sample as well as a consistent hypothesis for the case
n = 6.

We have |H| = |Cn| = 3n, since each literal can be included positively, with
negation, or not included. Plugging this into the sample complexity bound for
consistent hypotheses yields the following sample complexity bound for any ε > 0
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0 1 1 0 1 1 +

0 1 1 1 1 1 +

0 0 1 1 0 1 -

0 1 1 1 1 1 +

1 0 0 1 1 0 -

0 1 0 0 1 1 +

0 1 ? ? 1 1

Figure 2.4 Each of the first six rows of the table represents a training example with
its label, + or −, indicated in the last column. The last row contains 0 (respectively
1) in column i ∈ [1, 6] if the ith entry is 0 (respectively 1) for all the positive examples.
It contains “?” if both 0 and 1 appear as an ith entry for some positive example.
Thus, for this training sample, the hypothesis returned by the consistent algorithm
described in the text is x1 ∧ x2 ∧ x5 ∧ x6.

and δ > 0:

m ≥ 1
ε

(
(log 3)n + log

1
δ

)
. (2.10)

Thus, the class of conjunctions of at most n Boolean literals is PAC-learnable. Note
that the computational complexity is also polynomial, since the training cost per
example is in O(n). For δ = 0.02, ε = 0.1, and n = 10, the bound becomes m ≥ 149.
Thus, for a labeled sample of at least 149 examples, the bound guarantees 99%
accuracy with a confidence of at least 98%.

Example 2.3 Universal concept class

Consider the set X = {0, 1}n of all Boolean vectors with n components, and let Un

be the concept class formed by all subsets of X . Is this concept class PAC-learnable?
To guarantee a consistent hypothesis the hypothesis class must include the concept
class, thus |H| ≥ |Un| = 2(2n). Theorem 2.1 gives the following sample complexity
bound:

m ≥ 1
ε

(
(log 2)2n + log

1
δ

)
. (2.11)

Here, the number of training samples required is exponential in n, which is the cost
of the representation of a point in X . Thus, PAC-learning is not guaranteed by
the theorem. In fact, it is not hard to show that this universal concept class is not
PAC-learnable.
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Example 2.4 k-term DNF formulae

A disjunctive normal form (DNF) formula is a formula written as the disjunction of
several terms, each term being a conjunction of Boolean literals. A k-term DNF is a
DNF formula defined by the disjunction of k terms, each term being a conjunction
of at most n Boolean literals. Thus, for k = 2 and n = 3, an example of a k-term
DNF is (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x3).

Is the class C of k-term DNF formulae is PAC-learnable? The cardinality of the
class is 3nk, since each term is a conjunction of at most n variables and there are
3n such conjunctions, as seen previously. The hypothesis set H must contain C for
consistency to be possible, thus |H| ≥ 3nk. Theorem 2.1 gives the following sample
complexity bound:

m ≥ 1
ε

(
(log 3)nk + log

1
δ

)
, (2.12)

which is polynomial. However, it can be shown that the problem of learning k-
term DNF is in RP, the complexity class of problems that admit a randomized
polynomial-time decision solution. The problem is therefore computationally in-
tractable unless RP = NP, which is commonly conjectured not to be the case. Thus,
while the sample size needed for learning k-term DNF formulae is only polynomial,
efficient PAC-learning of this class is not possible unless RP = NP.

Example 2.5 k-CNF formulae

A conjunctive normal form (CNF) formula is a conjunction of disjunctions. A k-
CNF formula is an expression of the form T1 ∧ . . . ∧ Tj with arbitrary length j ∈ N

and with each term Ti being a disjunction of at most k Boolean attributes.
The problem of learning k-CNF formulae can be reduced to that of learning

conjunctions of Boolean literals, which, as seen previously, is a PAC-learnable
concept class. To do so, it suffices to associate to each term Ti a new variable.
Then, this can be done with the following bijection:

ai(x1) ∨ · · · ∨ ai(xn) → Yai(x1),...,ai(xn), (2.13)

where ai(xj) denotes the assignment to xj in term Ti. This reduction to PAC-
learning of conjunctions of Boolean literals may affect the original distribution, but
this is not an issue since in the PAC framework no assumption is made about the
distribution. Thus, the PAC-learnability of conjunctions of Boolean literals implies
that of k-CNF formulae.

This is a surprising result, however, since any k-term DNF formula can be written
as a k-CNF formula. Indeed, using associativity, a k-term DNF can be rewritten as
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a k-CNF formula via
k∨

i=1

ai(x1) ∧ · · · ∧ ai(xn) =
n∧

i1,...,ik=1

a1(xi1) ∨ · · · ∨ ak(xik
).

To illustrate this rewriting in a specific case, observe, for example, that

(u1 ∧ u2 ∧ u3) ∨ (v1 ∧ v2 ∧ v3) =
3∧

i,j=1

(ui ∧ vj).

But, as we previously saw, k-term DNF formulae are not efficiently PAC-learnable!
What can explain this apparent inconsistency? Observe that the number of new
variables needed to write a k-term DNF as a k-CNF formula via the transformation
just described is exponential in k, it is in O(nk). The discrepancy comes from the size
of the representation of a concept. A k-term DNF formula can be an exponentially
more compact representation, and efficient PAC-learning is intractable if a time-
complexity polynomial in that size is required. Thus, this apparent paradox deals
with key aspects of PAC-learning, which include the cost of the representation of a
concept and the choice of the hypothesis set.

2.3 Guarantees for finite hypothesis sets — inconsistent case

In the most general case, there may be no hypothesis in H consistent with the
labeled training sample. This, in fact, is the typical case in practice, where the
learning problems may be somewhat difficult or the concept classes more complex
than the hypothesis set used by the learning algorithm. However, inconsistent
hypotheses with a small number of errors on the training sample can be useful and,
as we shall see, can benefit from favorable guarantees under some assumptions. This
section presents learning guarantees precisely for this inconsistent case and finite
hypothesis sets.

To derive learning guarantees in this more general setting, we will use Hoeffding’s
inequality (theorem D.1) or the following corollary, which relates the generalization
error and empirical error of a single hypothesis.
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Corollary 2.1

Fix ε > 0 and let S denote an i.i.d. sample of size m. Then, for any hypothesis
h : X → {0, 1}, the following inequalities hold:

Pr
S∼Dm

[R̂(h) − R(h) ≥ ε] ≤ exp(−2mε2) (2.14)

Pr
S∼Dm

[R̂(h) − R(h) ≤ −ε] ≤ exp(−2mε2). (2.15)

By the union bound, this implies the following two-sided inequality:

Pr
S∼Dm

[|R̂(h) − R(h)| ≥ ε
] ≤ 2 exp(−2mε2). (2.16)

Proof The result follows immediately theorem D.1.

Setting the right-hand side of (2.16) to be equal to δ and solving for ε yields
immediately the following bound for a single hypothesis.

Corollary 2.2 Generalization bound — single hypothesis
Fix a hypothesis h : X → {0, 1}. Then, for any δ > 0, the following inequality holds
with probability at least 1 − δ:

R(h) ≤ R̂(h) +

√
log 2

δ

2m
. (2.17)

The following example illustrates this corollary in a simple case.

Example 2.6 Tossing a coin

Imagine tossing a biased coin that lands heads with probability p, and let our
hypothesis be the one that always guesses heads. Then the true error rate is R(h) = p

and the empirical error rate R̂(h) = p̂, where p̂ is the empirical probability of
heads based on the training sample drawn i.i.d. Thus, corollary 2.2 guarantees with
probability at least 1 − δ that

|p − p̂| ≤
√

log 2
δ

2m
. (2.18)

Therefore, if we choose δ = 0.02 and use a sample of size 500, with probability at
least 98%, the following approximation quality is guaranteed for p̂:

|p − p̂| ≤
√

log(10)
1000

≈ 0.048. (2.19)

Can we readily apply corollary 2.2 to bound the generalization error of the
hypothesis hS returned by a learning algorithm when training on a sample S? No,
since hS is not a fixed hypothesis, but a random variable depending on the training
sample S drawn. Note also that unlike the case of a fixed hypothesis for which
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the expectation of the empirical error is the generalization error (equation 2.3), the
generalization error R(hS) is a random variable and in general distinct from the
expectation E[R̂(hS)], which is a constant.

Thus, as in the proof for the consistent case, we need to derive a uniform con-
vergence bound, that is a bound that holds with high probability for all hypotheses
h ∈ H.

Theorem 2.2 Learning bound — finite H, inconsistent case
Let H be a finite hypothesis set. Then, for any δ > 0, with probability at least 1− δ,
the following inequality holds:

∀h ∈ H, R(h) ≤ R̂(h) +

√
log |H| + log 2

δ

2m
. (2.20)

Proof Let h1, . . . , h|H| be the elements of H. Using the union bound and applying
corollary 2.2 to each hypothesis yield:

Pr
[
∃h ∈ H

∣∣R̂(h) − R(h)
∣∣ > ε

]
= Pr

[(∣∣R̂(h1) − R(h1)
∣∣ > ε

) ∨ . . . ∨ (∣∣R̂(h|H|) − R(h|H|)
∣∣ > ε

)]
≤
∑
h∈H

Pr
[∣∣R̂(h) − R(h)

∣∣ > ε
]

≤ 2|H| exp(−2mε2).

Setting the right-hand side to be equal to δ completes the proof.

Thus, for a finite hypothesis set H,

R(h) ≤ R̂(h) + O

(√
log2 |H|

m

)
.

As already pointed out, log2 |H| can be interpreted as the number of bits needed
to represent H. Several other remarks similar to those made on the generalization
bound in the consistent case can be made here: a larger sample size m guarantees
better generalization, and the bound increases with |H|, but only logarithmically.
But, here, the bound is a less favorable function of log2 |H|

m ; it varies as the square
root of this term. This is not a minor price to pay: for a fixed |H|, to attain the
same guarantee as in the consistent case, a quadratically larger labeled sample is
needed.

Note that the bound suggests seeking a trade-off between reducing the empirical
error versus controlling the size of the hypothesis set: a larger hypothesis set is
penalized by the second term but could help reduce the empirical error, that is the
first term. But, for a similar empirical error, it suggests using a smaller hypothesis
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set. This can be viewed as an instance of the so-called Occam’s Razor principle
named after the theologian William of Occam: Plurality should not be posited without
necessity, also rephrased as, the simplest explanation is best. In this context, it could
be expressed as follows: All other things being equal, a simpler (smaller) hypothesis
set is better.

2.4 Generalities

In this section we will consider several important questions related to the learning
scenario, which we left out of the discussion of the earlier sections for simplicity.

2.4.1 Deterministic versus stochastic scenarios

In the most general scenario of supervised learning, the distribution D is defined
over X × Y, and the training data is a labeled sample S drawn i.i.d. according to
D:

S = ((x1, y1), . . . , (xm, ym)).

The learning problem is to find a hypothesis h ∈ H with small generalization error

R(h) = Pr
(x,y)∼D

[h(x) �= y] = E
(x,y)∼D

[1h(x) �=y].

This more general scenario is referred to as the stochastic scenario. Within this
setting, the output label is a probabilistic function of the input. The stochastic
scenario captures many real-world problems where the label of an input point is not
unique. For example, if we seek to predict gender based on input pairs formed by
the height and weight of a person, then the label will typically not be unique. For
most pairs, both male and female are possible genders. For each fixed pair, there
would be a probability distribution of the label being male.

The natural extension of the PAC-learning framework to this setting is known as
the agnostic PAC-learning .

Definition 2.4 Agnostic PAC-learning
Let H be a hypothesis set. A is an agnostic PAC-learning algorithm if there
exists a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0,
for all distributions D over X × Y, the following holds for any sample size m ≥
poly(1/ε, 1/δ, n, size(c)):

Pr
S∼Dm

[R(hS) − min
h∈H

R(h) ≤ ε] ≥ 1 − δ. (2.21)
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If A further runs in poly(1/ε, 1/δ, n, size(c)), then it is said to be an efficient agnostic
PAC-learning algorithm.

When the label of a point can be uniquely determined by some measurable func-
tion f : X → Y (with probability one), then the scenario is said to be deterministic.
In that case, it suffices to consider a distribution D over the input space. The
training sample is obtained by drawing (x1, . . . , xm) according to D and the labels
are obtained via f : yi = f(xi) for all i ∈ [1,m]. Many learning problems can be
formulated within this deterministic scenario.

In the previous sections, as well as in most of the material presented in this book,
we have restricted our presentation to the deterministic scenario in the interest of
simplicity. However, for all of this material, the extension to the stochastic scenario
should be straightforward for the reader.

2.4.2 Bayes error and noise

In the deterministic case, by definition, there exists a target function f with no
generalization error: R(h) = 0. In the stochastic case, there is a minimal non-zero
error for any hypothesis.

Definition 2.5 Bayes error
Given a distribution D over X × Y, the Bayes error R∗ is defined as the infimum
of the errors achieved by measurable functions h : X → Y:

R� = inf
h

h measurable

R(h). (2.22)

A hypothesis h with R(h) = R∗ is called a Bayes hypothesis or Bayes classifier.

By definition, in the deterministic case, we have R∗ = 0, but, in the stochastic case,
R∗ �= 0. Clearly, the Bayes classifier hBayes can be defined in terms of the conditional
probabilities as:

∀x ∈ X , hBayes(x) = argmax
y∈{0,1}

Pr[y|x]. (2.23)

The average error made by hBayes on x ∈ X is thus min{Pr[0|x], Pr[1|x]}, and this
is the minimum possible error. This leads to the following definition of noise.

Definition 2.6 Noise
Given a distribution D over X × Y, the noise at point x ∈ X is defined by

noise(x) = min{Pr[1|x], Pr[0|x]}. (2.24)

The average noise or the noise associated to D is E[noise(x)].
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Thus, the average noise is precisely the Bayes error: noise = E[noise(x)] = R∗. The
noise is a characteristic of the learning task indicative of its level of difficulty. A
point x ∈ X , for which noise(x) is close to 1/2, is sometimes referred to as noisy
and is of course a challenge for accurate prediction.

2.4.3 Estimation and approximation errors

The difference between the error of a hypothesis h ∈ H and the Bayes error can be
decomposed as:

R(h) − R∗ = (R(h) − R(h∗))︸ ︷︷ ︸
estimation

+ (R(h∗) − R∗)︸ ︷︷ ︸
approximation

, (2.25)

where h∗ is a hypothesis in H with minimal error, or a best-in-class hypothesis.3

The second term is referred to as the approximation error , since it measures how
well the Bayes error can be approximated using H. It is a property of the hypothesis
set H, a measure of its richness. The approximation error is not accessible, since
in general the underlying distribution D is not known. Even with various noise
assumptions, estimating the approximation error is difficult.

The first term is the estimation error , and it depends on the hypothesis h

selected. It measures the quality of the hypothesis h with respect to the best-in-class
hypothesis. The definition of agnostic PAC-learning is also based on the estimation
error. The estimation error of an algorithm A, that is, the estimation error of the
hypothesis hS returned after training on a sample S, can sometimes be bounded in
terms of the generalization error.

For example, let hERM
S denote the hypothesis returned by the empirical risk

minimization algorithm, that is the algorithm that returns a hypothesis hERM
S with

the smallest empirical error. Then, the generalization bound given by theorem 2.2,
or any other bound on suph∈H |R(h) − R̂(h)|, can be used to bound the estimation
error of the empirical risk minimization algorithm. Indeed, rewriting the estimation
error to make R̂(hERM

S ) appear and using R̂(hERM
S ) ≤ R̂(h∗), which holds by the

definition of the algorithm, we can write

R(hERM
S ) − R(h∗) = R(hERM

S ) − R̂(hERM
S ) + R̂(hERM

S ) − R(h∗)

≤ R(hERM
S ) − R̂(hERM

S ) + R̂(h∗) − R(h∗)

≤ 2 sup
h∈H

|R(h) − R̂(h)|. (2.26)

3. When H is a finite hypothesis set, h∗ necessarily exists; otherwise, in this discussion
R(h∗) can be replaced by infh∈H R(h).
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measure of capacity

training error

complexity term

bound on generalization errorerror

Figure 2.5 Illustration of structural risk minimization. The plots of three errors
are shown as a function of a measure of capacity. Clearly, as the size or capacity of
the hypothesis set increases, the training error decreases, while the complexity term
increases. SRM selects the hypothesis minimizing a bound on the generalization
error, which is a sum of the empirical error, and the complexity term is shown in
red.

The right-hand side of (2.26) can be bounded by theorem 2.2 and increases with
the size of the hypothesis set, while R(h∗) decreases with |H|.

2.4.4 Model selection

Here, we discuss some broad model selection and algorithmic ideas based on the
theoretical results presented in the previous sections. We assume an i.i.d. labeled
training sample S of size m and denote the error of a hypothesis h on S by R̂S(h)
to explicitly indicate its dependency on S.

While the guarantee of theorem 2.2 holds only for finite hypothesis sets, it already
provides us with some useful insights for the design of algorithms and, as we will see
in the next chapters, similar guarantees hold in the case of infinite hypothesis sets.
Such results invite us to consider two terms: the empirical error and a complexity
term, which here is a function of |H| and the sample size m.

In view of that, the ERM algorithm , which only seeks to minimize the error on
the training sample

hERM
S = argmin

h∈H
R̂S(h), (2.27)

might not be successful, since it disregards the complexity term. In fact, the
performance of the ERM algorithm is typically very poor in practice. Additionally,
in many cases, determining the ERM solution is computationally intractable. For
example, finding a linear hypothesis with the smallest error on the training sample
is NP-hard (as a function of the dimension of the space).

Another method known as structural risk minimization (SRM) consists of con-
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sidering instead an infinite sequence of hypothesis sets with increasing sizes

H0 ⊂ H1 ⊂ · · · ⊂ Hn · · · (2.28)

and to find the ERM solution hERM
n for each Hn. The hypothesis selected is the

one among the hERM
n solutions with the smallest sum of the empirical error and

a complexity term complexity(Hn,m) that depends on the size (or more generally
the capacity, that is, another measure of the richness of H) of Hn, and the sample
size m:

hSRM
S = argmin

h∈Hn
n∈N

R̂S(h) + complexity(Hn,m). (2.29)

Figure 2.5 illustrates the SRM method. While SRM benefits from strong theoretical
guarantees, it is typically computationally very expensive, since it requires deter-
mining the solution of multiple ERM problems. Note that the number of ERM
problems is not infinite if for some n the minimum empirical error is zero: The
objective function can only be larger for n′ ≥ n.

An alternative family of algorithms is based on a more straightforward optimiza-
tion that consists of minimizing the sum of the empirical error and a regularization
term that penalizes more complex hypotheses. The regularization term is typically
defined as ‖h‖2 for some norm ‖ · ‖ when H is a vector space:

hREG
S = argmin

h∈H
R̂S(h) + λ‖h‖2. (2.30)

λ ≥ 0 is a regularization parameter , which can be used to determine the trade-off
between empirical error minimization and control of the complexity. In practice, λ

is typically selected using n-fold cross-validation. In the next chapters, we will see
a number of different instances of such regularization-based algorithms.

2.5 Chapter notes

The PAC learning framework was introduced by Valiant [1984]. The book of Kearns
and Vazirani [1994] is an excellent reference dealing with most aspects of PAC-
learning and several other foundational questions in machine learning. Our example
of learning axis-aligned rectangles is based on that reference.

The PAC learning framework is a computational framework since it takes into
account the cost of the computational representations and the time complexity of
the learning algorithm. If we omit the computational aspects, it is similar to the
learning framework considered earlier by Vapnik and Chervonenkis [see Vapnik,
2000].
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Occam’s razor principle is invoked in a variety of contexts, such as in linguistics to
justify the superiority of a set of rules or syntax. The Kolmogorov complexity can be
viewed as the corresponding framework in information theory. In the context of the
learning guarantees presented in this chapter, the principle suggests selecting the
most parsimonious explanation (the hypothesis set with the smallest cardinality).
We will see in the next sections other applications of this principle with different
notions of simplicity or complexity. The idea of structural risk minimization (SRM)
is due to Vapnik [1998].

2.6 Exercises

2.1 Two-oracle variant of the PAC model. Assume that positive and negative
examples are now drawn from two separate distributions D+ and D−. For an
accuracy (1 − ε), the learning algorithm must find a hypothesis h such that:

Pr
x∼D+

[h(x) = 0] ≤ ε and Pr
x∼D−

[h(x) = 1] ≤ ε . (2.31)

Thus, the hypothesis must have a small error on both distributions. Let C be any
concept class and H be any hypothesis space. Let h0 and h1 represent the identically
0 and identically 1 functions, respectively. Prove that C is efficiently PAC-learnable
using H in the standard (one-oracle) PAC model if and only if it is efficiently PAC-
learnable using H ∪ {h0, h1} in this two-oracle PAC model.

2.2 PAC learning of hyper-rectangles. An axis-aligned hyper-rectangle in R
n is a

set of the form [a1, b1] × . . . × [an, bn]. Show that axis-aligned hyper-rectangles are
PAC-learnable by extending the proof given in Example 2.1 for the case n = 2.

2.3 Concentric circles. Let X = R
2 and consider the set of concepts of the form

c = {(x, y) : x2 + y2 ≤ r2} for some real number r. Show that this class can be
(ε, δ)-PAC-learned from training data of size m ≥ (1/ε) log(1/δ).

2.4 Non-concentric circles. Let X = R
2 and consider the set of concepts of the form

c = {x ∈ R
2 : ||x−x0|| ≤ r} for some point x0 ∈ R

2 and real number r. Gertrude, an
aspiring machine learning researcher, attempts to show that this class of concepts
may be (ε, δ)-PAC-learned with sample complexity m ≥ (3/ε) log(3/δ), but she is
having trouble with her proof. Her idea is that the learning algorithm would select
the smallest circle consistent with the training data. She has drawn three regions
r1, r2, r3 around the edge of concept c, with each region having probability ε/3 (see
figure 2.6). She wants to argue that if the generalization error is greater than or
equal to ε, then one of these regions must have been missed by the training data,
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r1

r2

r3

Figure 2.6 Gertrude’s regions r1, r2, r3.

and hence this event will occur with probability at most δ. Can you tell Gertrude
if her approach works?

2.5 Triangles. Let X = R
2 with orthonormal basis (e1, e2), and consider the set of

concepts defined by the area inside a right triangle ABC with two sides parallel to
the axes, with

−−→
AB/‖−−→AB‖ = e1 and

−→
AC/‖−→AC‖ = e2, and ‖−−→AB‖/‖−→AC‖ = α for some

positive real α ∈ R+. Show, using similar methods to those used in the chapter for
the axis-aligned rectangles, that this class can be (ε, δ)-PAC-learned from training
data of size m ≥ (3/ε) log(3/δ).

2.6 Learning in the presence of noise — rectangles. In example 2.1, we showed that
the concept class of axis-aligned rectangles is PAC-learnable. Consider now the case
where the training points received by the learner are subject to the following noise:
points negatively labeled are unaffected by noise but the label of a positive training
point is randomly flipped to negative with probability η ∈ (0, 1

2 ). The exact value of
the noise rate η is not known to the learner but an upper bound η′ is supplied to him
with η ≤ η′ < 1/2. Show that the algorithm described in class returning the tightest
rectangle containing positive points can still PAC-learn axis-aligned rectangles in
the presence of this noise. To do so, you can proceed using the following steps:

(a) Using the same notation as in example 2.1, assume that Pr[R] > ε. Suppose
that R(R′) > ε. Give an upper bound on the probability that R′ misses a region
rj , j ∈ [1, 4] in terms of ε and η′?

(b) Use that to give an upper bound on Pr[R(R′) > ε] in terms of ε and η′ and
conclude by giving a sample complexity bound.

2.7 Learning in the presence of noise — general case. In this question, we will seek
a result that is more general than in the previous question. We consider a finite
hypothesis set H, assume that the target concept is in H, and adopt the following
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noise model: the label of a training point received by the learner is randomly changed
with probability η ∈ (0, 1

2 ). The exact value of the noise rate η is not known to the
learner but an upper bound η′ is supplied to him with η ≤ η′ < 1/2.

(a) For any h ∈ H, let d(h) denote the probability that the label of a training
point received by the learner disagrees with the one given by h. Let h∗ be the
target hypothesis, show that d(h∗) = η.

(b) More generally, show that for any h ∈ H, d(h) = η + (1 − 2η) R(h), where
R(h) denotes the generalization error of h.

(c) Fix ε > 0 for this and all the following questions. Use the previous questions
to show that if R(h) > ε, then d(h) − d(h∗) ≥ ε′, where ε′ = ε(1 − 2η′).

(d) For any hypothesis h ∈ H and sample S of size m, let d̂(h) denote the
fraction of the points in S whose labels disagree with those given by h. We will
consider the algorithm L which, after receiving S, returns the hypothesis hS

with the smallest number of disagreements (thus d̂(hS) is minimal). To show
PAC-learning for L, we will show that for any h, if R(h) > ε, then with high
probability d̂(h) ≥ d̂(h∗). First, show that for any δ > 0, with probability at
least 1 − δ/2, for m ≥ 2

ε′2 log 2
δ , the following holds:

d̂(h∗) − d(h∗) ≤ ε′/2

(e) Second, show that for any δ > 0, with probability at least 1 − δ/2, for
m ≥ 2

ε′2 (log |H| + log 2
δ ), the following holds for all h ∈ H:

d(h) − d̂(h) ≤ ε′/2

(f) Finally, show that for any δ > 0, with probability at least 1 − δ, for
m ≥ 2

ε2(1−2η′)2 (log |H|+log 2
δ ), the following holds for all h ∈ H with R(h) > ε:

d̂(h) − d̂(h∗) ≥ 0.

(Hint : use d̂(h) − d̂(h∗) = [d̂(h) − d(h)] + [d(h) − d(h∗)] + [d(h∗) − d̂(h∗)] and
use previous questions to lower bound each of these three terms).

2.8 Learning union of intervals. Let [a, b] and [c, d] be two intervals of the real line
with a ≤ b ≤ c ≤ d. Let ε > 0, and assume that PrD((b, c)) > ε, where D is the
distribution according to which points are drawn.

(a) Show that the probability that m points are drawn i.i.d. without any of
them falling in the interval (b, c) is at most e−mε.

(b) Show that the concept class formed by the union of two closed intervals
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in R, e.g., [a, b] ∪ [c, d], is PAC-learnable by giving a proof similar to the one
given in Example 2.1 for axis-aligned rectangles. (Hint : your algorithm might
not return a hypothesis consistent with future negative points in this case.)

2.9 Consistent hypotheses. In this chapter, we showed that for a finite hypothesis
set H, a consistent learning algorithm A is a PAC-learning algorithm. Here, we
consider a converse question. Let Z be a finite set of m labeled points. Suppose that
you are given a PAC-learning algorithm A. Show that you can use A and a finite
training sample S to find in polynomial time a hypothesis h ∈ H that is consistent
with Z, with high probability. (Hint : you can select an appropriate distribution D

over Z and give a condition on R(h) for h to be consistent.)

2.10 Senate laws. For important questions, President Mouth relies on expert advice.
He selects an appropriate advisor from a collection of H = 2,800 experts.

(a) Assume that laws are proposed in a random fashion independently and
identically according to some distribution D determined by an unknown group
of senators. Assume that President Mouth can find and select an expert senator
out of H who has consistently voted with the majority for the last m = 200
laws. Give a bound on the probability that such a senator incorrectly predicts
the global vote for a future law. What is the value of the bound with 95%
confidence?

(b) Assume now that President Mouth can find and select an expert senator
out of H who has consistently voted with the majority for all but m′ = 20 of
the last m = 200 laws. What is the value of the new bound?



3 Rademacher Complexity and VC-

Dimension

The hypothesis sets typically used in machine learning are infinite. But the sample
complexity bounds of the previous chapter are uninformative when dealing with
infinite hypothesis sets. One could ask whether efficient learning from a finite sample
is even possible when the hypothesis set H is infinite. Our analysis of the family of
axis-aligned rectangles (Example 2.1) indicates that this is indeed possible at least
in some cases, since we proved that that infinite concept class was PAC-learnable.
Our goal in this chapter will be to generalize that result and derive general learning
guarantees for infinite hypothesis sets.

A general idea for doing so consists of reducing the infinite case to the analysis
of finite sets of hypotheses and then proceed as in the previous chapter. There
are different techniques for that reduction, each relying on a different notion of
complexity for the family of hypotheses. The first complexity notion we will use
is that of Rademacher complexity . This will help us derive learning guarantees
using relatively simple proofs based on McDiarmid’s inequality, while obtaining
high-quality bounds, including data-dependent ones, which we will frequently make
use of in future chapters. However, the computation of the empirical Rademacher
complexity is NP-hard for some hypothesis sets. Thus, we subsequently introduce
two other purely combinatorial notions, the growth function and the VC-dimension.
We first relate the Rademacher complexity to the growth function and then bound
the growth function in terms of the VC-dimension. The VC-dimension is often easier
to bound or estimate. We will review a series of examples showing how to compute
or bound it, then relate the growth function and the VC-dimensions. This leads to
generalization bounds based on the VC-dimension. Finally, we present lower bounds
based on the VC-dimension both in the realizable and non-realizable cases, which
will demonstrate the critical role of this notion in learning.
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3.1 Rademacher complexity

We will continue to use H to denote a hypothesis set as in the previous chapters,
and h an element of H. Many of the results of this section are general and hold for
an arbitrary loss function L : Y × Y → R. To each h : X → Y, we can associate a
function g that maps (x, y) ∈ X ×Y to L(h(x), y) without explicitly describing the
specific loss L used. In what follows G will generally be interpreted as the family of
loss functions associated to H.

The Rademacher complexity captures the richness of a family of functions by
measuring the degree to which a hypothesis set can fit random noise. The following
states the formal definitions of the empirical and average Rademacher complexity.

Definition 3.1 Empirical Rademacher complexity
Let G be a family of functions mapping from Z to [a, b] and S = (z1, . . . , zm) a fixed
sample of size m with elements in Z. Then, the empirical Rademacher complexity
of G with respect to the sample S is defined as:

R̂S(G) = E
σ

[
sup
g∈G

1
m

m∑
i=1

σig(zi)

]
, (3.1)

where σ = (σ1, . . . , σm)�, with σis independent uniform random variables taking
values in {−1, +1}.1 The random variables σi are called Rademacher variables.

Let gS denote the vector of values taken by function g over the sample S: gS =
(g(z1), . . . , g(zm))�. Then, the empirical Rademacher complexity can be rewritten
as

R̂S(G) = E
σ

[
sup
g∈G

σ · gS

m

]
.

The inner product σ · gS measures the correlation of gS with the vector of random
noise σ. The supremum supg∈G

σ·gS

m is a measure of how well the function class G

correlates with σ over the sample S. Thus, the empirical Rademacher complexity
measures on average how well the function class G correlates with random noise
on S. This describes the richness of the family G: richer or more complex families
G can generate more vectors gS and thus better correlate with random noise, on
average.

1. We assume implicitly that the supremum over the family G in this definition is
measurable and in general will adopt the same assumption throughout this book for other
suprema over a class of functions. This assumption does not hold for arbitrary function
classes but it is valid for the hypotheses sets typically considered in practice in machine
learning, and the instances discussed in this book.
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Definition 3.2 Rademacher complexity
Let D denote the distribution according to which samples are drawn. For any
integer m ≥ 1, the Rademacher complexity of G is the expectation of the empirical
Rademacher complexity over all samples of size m drawn according to D:

Rm(G) = E
S∼Dm

[R̂S(G)]. (3.2)

We are now ready to present our first generalization bounds based on Rademacher
complexity.

Theorem 3.1

Let G be a family of functions mapping from Z to [0, 1]. Then, for any δ > 0, with
probability at least 1 − δ, each of the following holds for all g ∈ G:

E[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2Rm(G) +

√
log 1

δ

2m
(3.3)

and E[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2R̂S(G) + 3

√
log 2

δ

2m
. (3.4)

Proof For any sample S = (z1, . . . , zm) and any g ∈ G, we denote by ÊS [g] the
empirical average of g over S: ÊS [g] = 1

m

∑m
i=1 g(zi). The proof consists of applying

McDiarmid’s inequality to function Φ defined for any sample S by

Φ(S) = sup
g∈G

E[g] − ÊS [g]. (3.5)

Let S and S′ be two samples differing by exactly one point, say zm in S and z′m
in S′. Then, since the difference of suprema does not exceed the supremum of the
difference, we have

Φ(S′) − Φ(S) ≤ sup
g∈G

ÊS [g] − ÊS′ [g] = sup
g∈G

g(zm) − g(z′m)
m

≤ 1
m

. (3.6)

Similarly, we can obtain Φ(S) − Φ(S′) ≤ 1/m, thus |Φ(S) − Φ(S′)| ≤ 1/m. Then,
by McDiarmid’s inequality, for any δ > 0, with probability at least 1 − δ/2, the
following holds:

Φ(S) ≤ E
S
[Φ(S)] +

√
log 2

δ

2m
. (3.7)
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We next bound the expectation of the right-hand side as follows:

E
S
[Φ(S)] = E

S

[
sup
g∈H

E[g] − ÊS(g)
]

= E
S

[
sup
g∈H

E
S′

[
ÊS′(g) − ÊS(g)

]]
(3.8)

≤ E
S,S′

[
sup
g∈H

ÊS′(g) − ÊS(g)
]

(3.9)

= E
S,S′

[
sup
g∈H

1
m

m∑
i=1

(g(z′i) − g(zi))
]

(3.10)

= E
σ,S,S′

[
sup
g∈H

1
m

m∑
i=1

σi(g(z′i) − g(zi))
]

(3.11)

≤ E
σ,S′

[
sup
g∈H

1
m

m∑
i=1

σig(z′i)
]

+ E
σ,S

[
sup
g∈H

1
m

m∑
i=1

−σig(zi)
]

(3.12)

= 2 E
σ,S

[
sup
g∈H

1
m

m∑
i=1

σig(zi)
]

= 2Rm(G). (3.13)

Equation 3.8 uses the fact that points in S′ are sampled in an i.i.d. fashion and thus
E[g] = ES′ [ÊS′(g)], as in (2.3). Inequality 3.9 holds by Jensen’s inequality and the
convexity of the supremum function. In equation 3.11, we introduce Rademacher
variables σis, that is uniformly distributed independent random variables taking
values in {−1, +1} as in definition 3.2. This does not change the expectation
appearing in (3.10): when σi = 1, the associated summand remains unchanged;
when σi = −1, the associated summand flips signs, which is equivalent to swapping
zi and z′i between S and S′. Since we are taking the expectation over all possible S

and S′, this swap does not affect the overall expectation. We are simply changing the
order of the summands within the expectation. (3.12) holds by the sub-additivity of
the supremum function, that is the identity sup(U +V ) ≤ sup(U)+sup(V ). Finally,
(3.13) stems from the definition of Rademacher complexity and the fact that the
variables σi and −σi are distributed in the same way.

The reduction to Rm(G) in equation 3.13 yields the bound in equation 3.3,
using δ instead of δ/2. To derive a bound in terms of R̂S(G), we observe that,
by definition 3.2, changing one point in S changes R̂S(G) by at most 1/m. Then,
using again McDiarmid’s inequality, with probability 1 − δ/2 the following holds:

Rm(G) ≤ R̂S(G) +

√
log 2

δ

2m
. (3.14)

Finally, we use the union bound to combine inequalities 3.7 and 3.14, which yields
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with probability at least 1 − δ:

Φ(S) ≤ 2R̂S(G) + 3

√
log 2

δ

2m
, (3.15)

which matches (3.4).

The following result relates the empirical Rademacher complexities of a hypothe-
sis set H and to the family of loss functions G associated to H in the case of binary
loss (zero-one loss).

Lemma 3.1

Let H be a family of functions taking values in {−1, +1} and let G be the family of
loss functions associated to H for the zero-one loss: G = {(x, y) �→ 1h(x) �=y : h ∈ H

}
.

For any sample S = ((x1, y1), . . . , (xm, ym)) of elements in X × {−1, +1}, let SX
denote its projection over X : SX = (x1, . . . , xm). Then, the following relation holds
between the empirical Rademacher complexities of G and H:

R̂S(G) =
1
2
R̂SX (H). (3.16)

Proof For any sample S = ((x1, y1), . . . , (xm, ym)) of elements in X × {−1, +1},
by definition, the empirical Rademacher complexity of G can be written as:

R̂S(G) = E
σ

[
sup
h∈H

1
m

m∑
i=1

σi1h(xi) �=yi

]
= E

σ

[
sup
h∈H

1
m

m∑
i=1

σi
1−yih(xi)

2

]
=

1
2

E
σ

[
sup
h∈H

1
m

m∑
i=1

−σiyih(xi)
]

=
1
2

E
σ

[
sup
h∈H

1
m

m∑
i=1

σih(xi)
]

=
1
2
RSX (H),

where we used the fact that 1h(xi) �=yi
= (1− yih(xi))/2 and the fact that for a fixed

yi ∈ {−1, +1}, σi and −yiσi are distributed in the same way.

Note that the lemma implies, by taking expectations, that for any m ≥ 1, Rm(G) =
1
2Rm(H). These connections between the empirical and average Rademacher com-
plexities can be used to derive generalization bounds for binary classification in
terms of the Rademacher complexity of the hypothesis set H.

Theorem 3.2 Rademacher complexity bounds – binary classification
Let H be a family of functions taking values in {−1, +1} and let D be the distribution
over the input space X . Then, for any δ > 0, with probability at least 1 − δ over
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a sample S of size m drawn according to D, each of the following holds for any
h ∈ H:

R(h) ≤ R̂(h) + Rm(H) +

√
log 1

δ

2m
(3.17)

and R(h) ≤ R̂(h) + R̂S(H) + 3

√
log 2

δ

2m
. (3.18)

Proof The result follows immediately by theorem 3.1 and lemma 3.1.

The theorem provides two generalization bounds for binary classification based on
the Rademacher complexity. Note that the second bound, (3.18), is data-dependent:
the empirical Rademacher complexity R̂S(H) is a function of the specific sample
S drawn. Thus, this bound could be particularly informative if we could compute
R̂S(H). But, how can we compute the empirical Rademacher complexity? Using
again the fact that σi and −σi are distributed in the same way, we can write

R̂S(H) = E
σ

[
sup
h∈H

1
m

m∑
i=1

−σih(xi)
]

= −E
σ

[
inf

h∈H

1
m

m∑
i=1

σih(xi)
]
.

Now, for a fixed value of σ, computing infh∈H
1
m

∑m
i=1 σih(xi) is equivalent to

an empirical risk minimization problem, which is known to be computationally
hard for some hypothesis sets. Thus, in some cases, computing R̂S(H) could
be computationally hard. In the next sections, we will relate the Rademacher
complexity to combinatorial measures that are easier to compute.

3.2 Growth function

Here we will show how the Rademacher complexity can be bounded in terms of the
growth function.

Definition 3.3 Growth function
The growth function ΠH : N → N for a hypothesis set H is defined by:

∀m ∈ N, ΠH(m) = max
{x1,...,xm}⊆X

∣∣∣{(h(x1), . . . , h(xm)
)
: h ∈ H

}∣∣∣. (3.19)

Thus, ΠH(m) is the maximum number of distinct ways in which m points can be
classified using hypotheses in H. This provides another measure of the richness of
the hypothesis set H. However, unlike the Rademacher complexity, this measure
does not depend on the distribution, it is purely combinatorial.
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To relate the Rademacher complexity to the growth function, we will use Mas-
sart’s lemma.

Theorem 3.3 Massart’s lemma
Let A ⊆ R

m be a finite set, with r = maxx∈A ‖x‖2, then the following holds:

E
σ

[
1
m

sup
x∈A

m∑
i=1

σixi

]
≤ r

√
2 log |A|
m

, (3.20)

where σis are independent uniform random variables taking values in {−1, +1} and
x1, . . . , xm are the components of vector x.

Proof For any t > 0, using Jensen’s inequality, rearranging terms, and bounding
the supremum by a sum, we obtain:

exp
(
t E

σ

[
sup
x∈A

m∑
i=1

σixi

]) ≤ E
σ

(
exp

[
t sup

x∈A

m∑
i=1

σixi

])
= E

σ

(
sup
x∈A

exp
[
t

m∑
i=1

σixi

])
≤
∑
x∈A

E
σ

(
exp

[
t

m∑
i=1

σixi

])
.

We next use the independence of the σis, then apply Hoeffding’s lemma (lemma D.1),
and use the definition of r to write:

exp
(
t E

σ

[
sup
x∈A

m∑
i=1

σixi

]) ≤
∑
x∈A

Πm
i=1 E

σi

(exp [tσixi])

≤
∑
x∈A

Πm
i=1 exp

[
t2(2xi)2

8

]

=
∑
x∈A

exp

[
t2

2

m∑
i=1

x2
i

]
≤
∑
x∈A

exp
[
t2r2

2

]
= |A|e t2R2

2 .

Taking the log of both sides and dividing by t gives us:

E
σ

[
sup
x∈A

m∑
i=1

σixi

]
≤ log |A|

t
+

tr2

2
. (3.21)

If we choose t =
√

2 log |A|
r , which minimizes this upper bound, we get:

E
σ

[
sup
x∈A

m∑
i=1

σixi

]
≤ r

√
2 log |A|. (3.22)

Dividing both sides by m leads to the statement of the lemma.
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Using this result, we can now bound the Rademacher complexity in terms of the
growth function.

Corollary 3.1

Let G be a family of functions taking values in {−1, +1}. Then the following holds:

Rm(G) ≤
√

2 log ΠG(m)
m

. (3.23)

Proof For a fixed sample S = (x1, . . . , xm), we denote by G|S the set of vectors
of function values (g(x1), . . . , g(xm))� where g is in G. Since g ∈ G takes values
in {−1, +1}, the norm of these vectors is bounded by

√
m. We can then apply

Massart’s lemma as follows:

Rm(G) = E
S

[
E
σ

[
sup

u∈G|S

1
m

m∑
i=1

σiui

]]
≤ E

S

[√
m
√

2 log |G|S |
m

]
.

By definition, |G|S | is bounded by the growth function, thus,

Rm(G) ≤ E
S

[√
m
√

2 log ΠG(m)
m

]
=

√
2 log ΠG(m)

m
,

which concludes the proof.

Combining the generalization bound (3.17) of theorem 3.2 with corollary 3.1 yields
immediately the following generalization bound in terms of the growth function.

Corollary 3.2 Growth function generalization bound
Let H be a family of functions taking values in {−1, +1}. Then, for any δ > 0, with
probability at least 1 − δ, for any h ∈ H,

R(h) ≤ R̂(h) +

√
2 log ΠH(m)

m
+

√
log 1

δ

2m
. (3.24)

Growth function bounds can be also derived directly (without using Rademacher
complexity bounds first). The resulting bound is then the following:

Pr
[∣∣∣R(h) − R̂(h)

∣∣∣ > ε
]
≤ 4ΠH(2m) exp

(
−mε2

8

)
, (3.25)

which only differs from (3.24) by constants.
The computation of the growth function may not be always convenient since, by

definition, it requires computing ΠH(m) for all m ≥ 1. The next section introduces
an alternative measure of the complexity of a hypothesis set H that is based instead
on a single scalar, which will turn out to be in fact deeply related to the behavior
of the growth function.
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(a) (b)

Figure 3.1 VC-dimension of intervals on the real line. (a) Any two points can be
shattered. (b) No sample of three points can be shattered as the (+,−, +) labeling
cannot be realized.

3.3 VC-dimension

Here, we introduce the notion of VC-dimension (Vapnik-Chervonenkis dimension).
The VC-dimension is also a purely combinatorial notion but it is often easier to
compute than the growth function (or the Rademacher Complexity). As we shall
see, the VC-dimension is a key quantity in learning and is directly related to the
growth function.

To define the VC-dimension of a hypothesis set H, we first introduce the concepts
of dichotomy and that of shattering . Given a hypothesis set H, a dichotomy of a
set S is one of the possible ways of labeling the points of S using a hypothesis in
H. A set S of m ≥ 1 points is said to be shattered by a hypothesis set H when H

realizes all possible dichotomies of S, that is when ΠH(m) = 2m.

Definition 3.4 VC-dimension
The VC-dimension of a hypothesis set H is the size of the largest set that can be
fully shattered by H:

VCdim(H) = max{m : ΠH(m) = 2m}. (3.26)

Note that, by definition, if VCdim(H) = d, there exists a set of size d that can
be fully shattered. But, this does not imply that all sets of size d or less are fully
shattered, in fact, this is typically not the case.

To further illustrate this notion, we will examine a series of examples of hypothesis
sets and will determine the VC-dimension in each case. To compute the VC-
dimension we will typically show a lower bound for its value and then a matching
upper bound. To give a lower bound d for VCdim(H), it suffices to show that a set
S of cardinality d can be shattered by H. To give an upper bound, we need to prove
that no set S of cardinality d + 1 can be shattered by H, which is typically more
difficult.

Example 3.1 Intervals on the real line

Our first example involves the hypothesis class of intervals on the real line.
It is clear that the VC-dimension is at least two, since all four dichotomies
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Figure 3.2 Unrealizable dichotomies for four points using hyperplanes in R
2. (a)

All four points lie on the convex hull. (b) Three points lie on the convex hull while
the remaining point is interior.

(+, +), (−,−), (+,−), (−, +) can be realized, as illustrated in figure 3.1(a). In con-
trast, by the definition of intervals, no set of three points can be shattered since the
(+,−, +) labeling cannot be realized. Hence, VCdim(intervals in R) = 2.

Example 3.2 Hyperplanes

Consider the set of hyperplanes in R
2. We first observe that any three non-collinear

points in R
2 can be shattered. To obtain the first three dichotomies, we choose a

hyperplane that has two points on one side and the third point on the opposite
side. To obtain the fourth dichotomy we have all three points on the same side of
the hyperplane. The remaining four dichotomies are realized by simply switching
signs. Next, we show that four points cannot be shattered by considering two cases:
(i) the four points lie on the convex hull defined by the four points, and (ii) three
of the four points lie on the convex hull and the remaining point is internal. In
the first case, a positive labeling for one diagonal pair and a negative labeling for
the other diagonal pair cannot be realized, as illustrated in figure 3.2(a). In the
second case, a labeling which is positive for the points on the convex hull and
negative for the interior point cannot be realized, as illustrated in figure 3.2(b).
Hence, VCdim(hyperplanes in R

2) = 3.
More generally in R

d, we derive a lower bound by starting with a set of d + 1
points in R

d, setting x0 to be the origin and defining xi, for i ∈ {1, . . . , d}, as the
point whose ith coordinate is 1 and all others are 0. Let y0, y1, . . . , yd ∈ {−1, +1} be
an arbitrary set of labels for x0, x1, . . . , xd. Let w be the vector whose ith coordinate
is yi. Then the classifier defined by the hyperplane of equation w ·x+ y0

2 = 0 shatters
x0, x1, . . . , xd since for any i ∈ [0, d],

sgn
(
w · xi +

y0

2

)
= sgn

(
yi +

y0

2

)
= yi. (3.27)

To obtain an upper bound, it suffices to show that no set of d + 2 points can be
shattered by halfspaces. To prove this, we will use the following general theorem.



3.3 VC-dimension 43

+

-
--

+

+
--

+

+
-+

+

-
+-

(a)

+
-

+

+
+

(b)

Figure 3.3 VC-dimension of axis-aligned rectangles. (a) Examples of realizable
dichotomies for four points in a diamond pattern. (b) No sample of five points can
be realized if the interior point and the remaining points have opposite labels.

Theorem 3.4 Radon’s theorem
Any set X of d+2 points in R

d can be partitioned into two subsets X1 and X2 such
that the convex hulls of X1 and X2 intersect.

Proof Let X = {x1, . . . ,xd+2} ⊂ R
d. The following is a system of d + 1 linear

equations in α1, . . . , αd+2:

d+2∑
i=1

αixi = 0 and
d+2∑
i=1

αi = 0, (3.28)

since the first equality leads to d equations, one for each component. The number
of unknowns, d + 2, is larger than the number of equations, d + 1, therefore
the system admits a non-zero solution β1, . . . , βd+2. Since

∑d+2
i=1 βi = 0, both

I1 = {i ∈ [1, d + 2] : βi > 0} and I2 = {i ∈ [1, d + 2] : βi < 0} are non-empty
sets and X1 = {xi : i ∈ I1} and X2 = {xi : i ∈ I2} form a partition of X. By the
last equation of (3.28),

∑
i∈I1

βi = −∑i∈I2
βi. Let β =

∑
i∈I1

βi. Then, the first
part of (3.28) implies ∑

i∈I1

βi

β
xi =

∑
i∈I2

−βi

β
xi,

with
∑

i∈I1

βi

β =
∑

i∈I2

−βi

β = 1, and βi

β ≥ 0 for i ∈ I1 and −βi

β ≥ 0 for i ∈ I2. By
definition of the convex hulls (B.4), this implies that

∑
i∈I1

βi

β xi belongs both to
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(a) (b)

Figure 3.4 Convex d-gons in the plane can shatter 2d + 1 points. (a) d-gon
construction when there are more negative labels. (b) d-gon construction when
there are more positive labels.

the convex hull of X1 and to that of X2.

Now, let X be a set of d + 2 points. By Radon’s theorem, it can be partitioned
into two sets X1 and X2 such that their convex hulls intersect. Observe that when
two sets of points X1 and X2 are separated by a hyperplane, their convex hulls
are also separated by that hyperplane. Thus, X1 and X2 cannot be separated by
a hyperplane and X is not shattered. Combining our lower and upper bounds, we
have proven that VCdim(hyperplanes in R

d) = d + 1.

Example 3.3 Axis-aligned Rectangles

We first show that the VC-dimension is at least four, by considering four points
in a diamond pattern. Then, it is clear that all 16 dichotomies can be realized,
some of which are illustrated in figure 3.2(a). In contrast, for any set of five distinct
points, if we construct the minimal axis-aligned rectangle containing these points,
one of the five points is in the interior of this rectangle. Imagine that we assign a
negative label to this interior point and a positive label to each of the remaining
four points, as illustrated in figure 3.2(b). There is no axis-aligned rectangle that
can realize this labeling. Hence, no set of five distinct points can be shattered and
VCdim(axis-aligned rectangles) = 4.

Example 3.4 Convex Polygons

We focus on the class of convex d-gons in the plane. To get a lower bound, we
show that any set of 2d + 1 points can be fully shattered. To do this, we select
2d + 1 points that lie on a circle, and for a particular labeling, if there are more
negative than positive labels, then the points with the positive labels are used as
the polygon’s vertices, as in figure 3.4(a). Otherwise, the tangents of the negative
points serve as the edges of the polygon, as shown in (3.4)(b). To derive an upper
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Figure 3.5 An example of a sine function (with ω = 50) used for classification.

bound, it can be shown that choosing points on the circle maximizes the number
of possible dichotomies, and thus VCdim(convex d-gons) = 2d + 1. Note also that
VCdim(convex polygons) = +∞.

Example 3.5 Sine Functions

The previous examples could suggest that the VC-dimension of H coincides with
the number of free parameters defining H. For example, the number of parameters
defining hyperplanes matches their VC-dimension. However, this does not hold in
general. Several of the exercises in this chapter illustrate this fact. The following
provides a striking example from this point of view. Consider the following family
of sine functions: {t �→ sin(ωt) : ω ∈ R}. One instance of this function class is shown
in figure 3.5. These sine functions can be used to classify the points on the real line:
a point is labeled positively if it is above the curve, negatively otherwise. Although
this family of sine function is defined via a single parameter, ω, it can be shown
that VCdim(sine functions) = +∞ (exercise 3.12).

The VC-dimension of many other hypothesis sets can be determined or upper-
bounded in a similar way (see this chapter’s exercises). In particular, the VC-
dimension of any vector space of dimension r < ∞ can be shown to be at most
r (exercise 3.11). The next result known as Sauer’s lemma clarifies the connection
between the notions of growth function and VC-dimension.

Theorem 3.5 Sauer’s lemma
Let H be a hypothesis set with VCdim(H) = d. Then, for all m ∈ N, the following
inequality holds:

ΠH(m) ≤
d∑

i=0

(
m

i

)
. (3.29)
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x1 x2 · · · xm−1 xm

· · · · · · · · · · · · · · ·

1 1 0 1 0
1 1 0 1 1
0 1 1 1 1
1 0 0 1 0
1 0 0 0 1

G1 =G|S′ G2 ={g′ ⊆ S′ : (g′ ∈ G) ∧ (g′ ∪ {xm} ∈ G)}.

Figure 3.6 Illustration of how G1 and G2 are constructed in the proof of Sauer’s
lemma.

Proof The proof is by induction on m+ d. The statement clearly holds for m = 1
and d = 0 or d = 1. Now, assume that it holds for (m − 1, d − 1) and (m − 1, d).
Fix a set S = {x1, . . . , xm} with ΠH(m) dichotomies and let G = H|S be the set of
concepts H induces by restriction to S.

Now consider the following families over S′ = {x1, . . . , xm−1}. We define G1 =
G|S′ as the set of concepts H includes by restriction to S′. Next, by identifying each
concept as the set of points (in S′ or S) for which it is non-zero, we can define G2

as

G2 = {g′ ⊆ S′ : (g′ ∈ G) ∧ (g′ ∪ {xm} ∈ G)}.

Since g′ ⊆ S′, g′ ∈ G means that without adding xm it is a concept of G. Further,
the constraint g′ ∪ {xm} ∈ G means that adding xm to g′ also makes it a concept
of G. The construction of G1 and G2 is illustrated pictorially in figure 3.6. Given
our definitions of G1 and G2, observe that |G1| + |G2| = |G|.

Since VCdim(G1) ≤ VCdim(G) ≤ d, then by definition of the growth function
and using the induction hypothesis,

|G1| ≤ ΠG1(m − 1) ≤
d∑

i=0

(
m − 1

i

)
.

Further, by definition of G2, if a set Z ⊆ S′ is shattered by G2, then the set Z∪{xm}
is shattered by G. Hence,

VCdim(G2) ≤ VCdim(G) − 1 = d − 1,
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and by definition of the growth function and using the induction hypothesis,

|G2| ≤ ΠG2(m − 1) ≤
d−1∑
i=0

(
m − 1

i

)
.

Thus,

|G| = |G1| + |G2| ≤
d∑

i=0

(
m−1

i

)
+

d−1∑
i=0

(
m−1

i

)
=

d∑
i=0

(
m−1

i

)
+
(
m−1
i−1

)
=

d∑
i=0

(
m
i

)
,

which completes the inductive proof.

The significance of Sauer’s lemma can be seen by corollary 3.3, which remarkably
shows that growth function only exhibits two types of behavior: either VCdim(H) =
d < +∞, in which case ΠH(m) = O(md), or VCdim(H) = +∞, in which case
ΠH(m) = 2m.

Corollary 3.3

Let H be a hypothesis set with VCdim(H) = d. Then for all m ≥ d,

ΠH(m) ≤
(em

d

)d

= O(md). (3.30)

Proof The proof begins by using Sauer’s lemma. The first inequality multiplies
each summand by a factor that is greater than or equal to one since m ≥ d, while
the second inequality adds non-negative summands to the summation.

ΠH(m) ≤
d∑

i=0

(
m

i

)

≤
d∑

i=0

(
m

i

)(m

d

)d−i

≤
m∑

i=0

(
m

i

)(m

d

)d−i

=
(m

d

)d m∑
i=0

(
m

i

)(
d

m

)i

=
(m

d

)d
(

1 +
d

m

)m

≤
(m

d

)d

ed.

After simplifying the expression using the binomial theorem, the final inequality
follows using the general identity (1 − x) ≤ e−x.

The explicit relationship just formulated between VC-dimension and the growth
function combined with corollary 3.2 leads immediately to the following generaliza-
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tion bounds based on the VC-dimension.

Corollary 3.4 VC-dimension generalization bounds
Let H be a family of functions taking values in {−1, +1} with VC-dimension d.
Then, for any δ > 0, with probability at least 1 − δ, the following holds for all
h ∈ H:

R(h) ≤ R̂(h) +

√
2d log em

d

m
+

√
log 1

δ

2m
. (3.31)

Thus, the form of this generalization bound is

R(h) ≤ R̂(h) + O

(√
log(m/d)
(m/d)

)
, (3.32)

which emphasizes the importance of the ratio m/d for generalization. The theorem
provides another instance of Occam’s razor principle where simplicity is measured
in terms of smaller VC-dimension.

VC-dimension bounds can be derived directly without using an intermediate
Rademacher complexity bound, as for (3.25): combining Sauer’s lemma with (3.25)
leads to the following high-probability bound

R(h) ≤ R̂(h) +

√
8d log 2em

d + 8 log 4
δ

m
,

which has the general form of (3.32). The log factor plays only a minor role in these
bounds. A finer analysis can be used in fact to eliminate that factor.

3.4 Lower bounds

In the previous section, we presented several upper bounds on the generalization
error. In contrast, this section provides lower bounds on the generalization error of
any learning algorithm in terms of the VC-dimension of the hypothesis set used.

These lower bounds are shown by finding for any algorithm a ‘bad’ distribution.
Since the learning algorithm is arbitrary, it will be difficult to specify that particular
distribution. Instead, it suffices to prove its existence non-constructively. At a high
level, the proof technique used to achieve this is the probabilistic method of Paul
Erdös. In the context of the following proofs, first a lower bound is given on the
expected error over the parameters defining the distributions. From that, the lower
bound is shown to hold for at least one set of parameters, that is one distribution.
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Theorem 3.6 Lower bound, realizable case
Let H be a hypothesis set with VC-dimension d > 1. Then, for any learning
algorithm A, there exist a distribution D over X and a target function f ∈ H

such that

Pr
S∼Dm

[
RD(hS , f) >

d − 1
32m

]
≥ 1/100. (3.33)

Proof Let X = {x0, x1, . . . , xd−1} ⊆ X be a set that is fully shattered by H. For
any ε > 0, we choose D such that its support is reduced to X and so that one
point (x0) has very high probability (1 − ε), with the rest of the probability mass
distributed uniformly among the other points:

Pr
D

[x0] = 1 − 8ε and ∀i ∈ [1, d − 1], Pr
D

[xi] =
8ε

d − 1
. (3.34)

With this definition, most samples would contain x0 and, since X is fully shattered,
A can essentially do no better than tossing a coin when determining the label of a
point xi not falling in the training set.

We assume without loss of generality that A makes no error on x0. For a sample
S, we let S denote the set of its elements falling in {x1, . . . , xd−1}, and let S be the
set of samples S of size m such that |S| ≤ (d − 1)/2. Now, fix a sample S ∈ S, and
consider the uniform distribution U over all labelings f : X → {0, 1}, which are all
in H since the set is shattered. Then, the following lower bound holds:

E
f∼U

[RD(hS , f)] =
∑

f

∑
x∈X

1h(x) �=f(x) Pr[x] Pr[f ]

≥
∑

f

∑
x�∈S

1h(x) �=f(x) Pr[x] Pr[f ]

=
∑
x�∈S

(∑
f

1h(x) �=f(x) Pr[f ]
)

Pr[x]

=
1
2

∑
x�∈S

Pr[x] ≥ 1
2

d − 1
2

8ε

d − 1
= 2ε. (3.35)

The first lower bound holds because we remove non-negative terms from the
summation when we only consider x �∈ S instead of all x in X. After rearranging
terms, the subsequent equality holds since we are taking an expectation over f ∈ H

with uniform weight on each f and H shatters X. The final lower bound holds due
to the definitions of D and S, the latter which implies that |X − S| ≥ (d − 1)/2.

Since (3.35) holds for all S ∈ S, it also holds in expectation over all S ∈ S:
ES∈S

[
Ef∼U [RD(hS , f)]

] ≥ 2ε. By Fubini’s theorem, the expectations can be



50 Rademacher Complexity and VC-Dimension

permuted, thus,

E
f∼U

[
E

S∈S
[RD(hS , f)]

]
≥ 2ε. (3.36)

This implies that ES∈S [RD(hS , f0)] ≥ 2ε for at least one labeling f0 ∈ H. Decom-
posing this expectation into two parts and using RD(hS , f0) ≤ PrD[X − {x0}], we
obtain:

E
S∈S

[RD(hS , f0)] =
∑

S :RD(hS ,f0)≥ε

RD(hS , f0) Pr[RD(hS , f0)] +
∑

S :RD(hS ,f0)<ε

RD(hS , f0) Pr[RD(hS , f0)]

≤ Pr
D

[X − {x0}] Pr
S∈S

[RD(hS , f0) ≥ ε] + ε Pr
S∈S

[RD(hS , f0) < ε]

≤ 8ε Pr
S∈S

[RD(hS , f0) ≥ ε] + ε
(
1 − Pr

S∈S
[RD(hS , f0) ≥ ε]

)
.

Collecting terms in PrS∈S [RD(hS , f0) ≥ ε] yields

Pr
S∈S

[RD(hS , f0) ≥ ε] ≥ 1
7ε

(2ε − ε) =
1
7
. (3.37)

Thus, the probability over all samples S (not necessarily in S) can be lower bounded
as

Pr
S

[RD(hS , f0) ≥ ε] ≥ Pr
S∈S

[RD(hS , f0) ≥ ε] Pr[S] ≥ 1
7

Pr[S]. (3.38)

This leads us to find a lower bound for Pr[S]. The probability that more than
(d−1)/2 points are drawn in a sample of size m verifies the Chernoff bound for any
γ > 0:

1 − Pr[S] = Pr[Sm ≥ 8εm(1 + γ)] ≤ e−8εm γ2

3 . (3.39)

Therefore, for ε = (d − 1)/(32m) and γ = 1,

Pr[Sm ≥ d−1
2 ] ≤ e−(d−1)/12 ≤ e−1/12 ≤ 1 − 7δ, (3.40)

for δ ≤ .01. Thus Pr[S] ≥ 7δ and PrS [RD(hS , f0) ≥ ε] ≥ δ.

The theorem shows that for any algorithm A, there exists a ‘bad’ distribution over
X and a target function f for which the error of the hypothesis returned by A is
Ω( d

m ) with some constant probability. This further demonstrates the key role played
by the VC-dimension in learning. The result implies in particular that PAC-learning
in the non-realizable case is not possible when the VC-dimension is infinite.

Note that the proof shows a stronger result than the statement of the theorem:
the distribution D is selected independently of the algorithm A. We now present a
theorem giving a lower bound in the non-realizable case. The following two lemmas
will be needed for the proof.
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Lemma 3.2

Let α be a uniformly distributed random variable taking values in {α−, α+}, where
α− = 1

2 − ε
2 and α+ = 1

2 + ε
2 , and let S be a sample of m ≥ 1 random variables

X1, . . . , Xm taking values in {0, 1} and drawn i.i.d. according to the distribution Dα

defined by PrDα
[X = 1] = α. Let h be a function from Xm to {α−, α+}, then the

following holds:

E
α

[
Pr

S∼Dm
α

[h(S) �= α]
]
≥ Φ(2�m/2�, ε), (3.41)

where Φ(m, ε) = 1
4

(
1 −

√
1 − exp

(− mε2

1−ε2

))
for all m and ε.

Proof The lemma can be interpreted in terms of an experiment with two coins
with biases α− and α+. It implies that for a discriminant rule h(S) based on a
sample S drawn from Dα− or Dα+ , to determine which coin was tossed, the sample
size m must be at least Ω(1/ε2). The proof is left as an exercise (exercise 3.19).

We will make use of the fact that for any fixed ε the function m �→ Φ(m,x) is
convex, which is not hard to establish.

Lemma 3.3

Let Z be a random variable taking values in [0, 1]. Then, for any γ ∈ [0, 1),

Pr[z > γ] ≥ E[Z] − γ

1 − γ
> E[Z] − γ. (3.42)

Proof Since the values taken by Z are in [0, 1],

E[Z] =
∑
z≤γ

Pr[Z = z]z +
∑
z>γ

Pr[Z = z]z

≤
∑
z≤γ

Pr[Z = z]γ +
∑
z>γ

Pr[Z = z]

= γ Pr[Z ≤ γ] + Pr[Z > γ]

= γ(1 − Pr[Z > γ]) + Pr[Z > γ]

= (1 − γ) Pr[Z > γ] + γ,

which concludes the proof.

Theorem 3.7 Lower bound, non-realizable case
Let H be a hypothesis set with VC-dimension d > 1. Then, for any learning
algorithm A, there exists a distribution D over X × {0, 1} such that:

Pr
S∼Dm

[
RD(hS) − inf

h∈H
RD(h) >

√
d

320m

]
≥ 1/64. (3.43)
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Equivalently, for any learning algorithm, the sample complexity verifies

m ≥ d

320ε2
. (3.44)

Proof Let X = {x1, x1, . . . , xd} ⊆ X be a set fully shattered by H. For any
α ∈ [0, 1] and any vector σ = (σ1, . . . , σd)� ∈ {−1, +1}d, we define a distribution
Dσ with support X × {0, 1} as follows:

∀i ∈ [1, d], Pr
Dσ

[(xi, 1)] =
1
d

(1
2

+
σiα

2

)
. (3.45)

Thus, the label of each point xi, i ∈ [1, d], follows the distribution PrDσ [·|xi], that
of a biased coin where the bias is determined by the sign of σi and the magnitude
of α. To determine the most likely label of each point xi, the learning algorithm
will therefore need to estimate PrDσ

[1|xi] with an accuracy better than α. To make
this further difficult, α and σ will be selected based on the algorithm, requiring, as
in lemma 3.2, Ω(1/α2) instances of each point xi in the training sample.

Clearly, the Bayes classifier h∗
Dσ

is defined by h∗
Dσ

(xi) = argmaxy∈{0,1} Pr[y|xi] =
1σi>0 for all i ∈ [1, d]. h∗

Dσ
is in H since X is fully shattered. For all h ∈ H,

RDσ (h) − RDσ (h∗
Dσ

) =
1
d

∑
x∈X

(α

2
+

α

2

)
1h(x) �=h∗

Dσ
(x) =

α

d

∑
x∈X

1h(x) �=h∗
Dσ

(x). (3.46)

Let hS denote the hypothesis returned by the learning algorithm A after receiving
a labeled sample S drawn according to Dσ. We will denote by |S|x the number of
occurrences of a point x in S. Let U denote the uniform distribution over {−1, +1}d.
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Then, in view of (3.46), the following holds:

E
σ∼U
S∼Dm

σ

[
1
α

[
RDσ

(hS) − RDσ
(h∗

Dσ
)
]]

=
1
d

∑
x∈X

E
σ∼U
S∼Dm

σ

[
1hS(x) �=h∗

Dσ
(x)

]
=

1
d

∑
x∈X

E
σ∼U

[
Pr

S∼Dm
σ

[
hS(x) �= h∗

Dσ
(x)
]]

=
1
d

∑
x∈X

m∑
n=0

E
σ∼U

[
Pr

S∼Dm
σ

[
hS(x) �= h∗

Dσ
(x)

∣∣ |S|x = n
]
Pr[|S|x = n]

]
≥ 1

d

∑
x∈X

m∑
n=0

Φ(n + 1, α) Pr[|S|x = n] (lemma 3.2)

≥ 1
d

∑
x∈X

Φ(m/d + 1, α) (convexity of Φ(·, α) and Jensen’s ineq.)

= Φ(m/d + 1, α).

Since the expectation over σ is lower-bounded by Φ(m/d + 1, α), there must exist
some σ ∈ {−1, +1}d for which

E
S∼Dm

σ

[
1
α

[
RDσ

(hS) − RDσ
(h∗

Dσ
)
]]

> Φ(m/d + 1, α). (3.47)

Then, by lemma 3.3, for that σ, for any γ ∈ [0, 1],

Pr
S∼Dm

σ

[
1
α

[
RDσ

(hS) − RDσ
(h∗

Dσ
)
]

> γu

]
> (1 − γ)u, (3.48)

where u = Φ(m/d + 1, α). Selecting δ and ε such that δ ≤ (1 − γ)u and ε ≤ γαu

gives

Pr
S∼Dm

σ

[
RDσ

(hS) − RDσ
(h∗

Dσ
) > ε

]
> δ. (3.49)
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To satisfy the inequalities defining ε and δ, let γ = 1 − 8δ. Then,

δ ≤ (1 − γ)u ⇐⇒ u ≥ 1
8

(3.50)

⇐⇒ 1
4

(
1 −

√
1 − exp

(
− (m/d + 1)α2

1 − α2

))
≥ 1

8
(3.51)

⇐⇒ (m/d + 1)α2

1 − α2
≤ log

4
3

(3.52)

⇐⇒ m

d
≤ (

1
α2

− 1) log
4
3

− 1. (3.53)

Selecting α = 8ε/(1 − 8δ) gives ε = γα/8 and the condition

m

d
≤
(

(1 − 8δ)2

64ε2
− 1

)
log

4
3

− 1. (3.54)

Let f(1/ε2) denote the right-hand side. We are seeking a sufficient condition of the
form m/d ≤ ω/ε2. Since ε ≤ 1/64, to ensure that ω/ε2 ≤ f(1/ε2), it suffices to
impose ω/(1/64)2 = f(1/(1/64)2). This condition gives

ω = (7/64)2 log(4/3) − (1/64)2(log(4/3) + 1) ≈ .003127 ≥ 1/320 = .003125.

Thus, ε2 ≤ 1
320(m/d) is sufficient to ensure the inequalities.

The theorem shows that for any algorithm A, in the non-realizable case, there exists
a ‘bad’ distribution over X × {0, 1} such that the error of the hypothesis returned
by A is Ω

(√
d
m

)
with some constant probability. The VC-dimension appears as a

critical quantity in learning in this general setting as well. In particular, with an
infinite VC-dimension, agnostic PAC-learning is not possible.

3.5 Chapter notes

The use of Rademacher complexity for deriving generalization bounds in learning
was first advocated by Koltchinskii [2001], Koltchinskii and Panchenko [2000], and
Bartlett, Boucheron, and Lugosi [2002a], see also [Koltchinskii and Panchenko,
2002, Bartlett and Mendelson, 2002]. Bartlett, Bousquet, and Mendelson [2002b]
introduced the notion of local Rademacher complexity , that is the Rademacher
complexity restricted to a subset of the hypothesis set limited by a bound on
the variance. This can be used to derive better guarantees under some regularity
assumptions about the noise.

Theorem 3.3 is due to Massart [2000]. The notion of VC-dimension was introduced
by Vapnik and Chervonenkis [1971] and has been since extensively studied [Vapnik,
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2006, Vapnik and Chervonenkis, 1974, Blumer et al., 1989, Assouad, 1983, Dudley,
1999]. In addition to the key role it plays in machine learning, the VC-dimension is
also widely used in a variety of other areas of computer science and mathematics
(e.g., see Shelah [1972], Chazelle [2000]). Theorem 3.5 is known as Sauer’s lemma
in the learning community, however the result was first given by Vapnik and
Chervonenkis [1971] (in a somewhat different version) and later independently by
Sauer [1972] and Shelah [1972].

In the realizable case, lower bounds for the expected error in terms of the VC-
dimension were given by Vapnik and Chervonenkis [1974] and Haussler et al. [1988].
Later, a lower bound for the probability of error such as that of theorem 3.6 was
given by Blumer et al. [1989]. Theorem 3.6 and its proof, which improves upon
this previous result, are due to Ehrenfeucht, Haussler, Kearns, and Valiant [1988].
Devroye and Lugosi [1995] gave slightly tighter bounds for the same problem with
a more complex expression. Theorem 3.7 giving a lower bound in the non-realizable
case and the proof presented are due to Anthony and Bartlett [1999]. For other
examples of application of the probabilistic method demonstrating its full power,
consult the reference book of Alon and Spencer [1992].

There are several other measures of the complexity of a family of functions used
in machine learning, including covering numbers, packing numbers, and some other
complexity measures discussed in chapter 10. A covering number Np(G, ε) is the
minimal number of Lp balls of radius ε > 0 needed to cover a family of loss functions
G. A packing number Mp(G, ε) is the maximum number of non-overlapping Lp

balls of radius ε centered in G. The two notions are closely related, in particular
it can be shown straightfowardly that Mp(G, 2ε) ≤ Np(G, ε) ≤ Mp(G, ε) for G

and ε > 0. Each complexity measure naturally induces a different reduction of
infinite hypothesis sets to finite ones, thereby resulting in generalization bounds
for infinite hypothesis sets. Exercise 3.22 illustrates the use of covering numbers
for deriving generalization bounds using a very simple proof. There are also close
relationships between these complexity measures: for example, by Dudley’s theorem,
the empirical Rademacher complexity can be bounded in terms of N2(G, ε) [Dudley,
1967, 1987] and the covering and packing numbers can be bounded in terms of the
VC-dimension [Haussler, 1995]. See also [Ledoux and Talagrand, 1991, Alon et al.,
1997, Anthony and Bartlett, 1999, Cucker and Smale, 2001, Vidyasagar, 1997] for
a number of upper bounds on the covering number in terms of other complexity
measures.

3.6 Exercises

3.1 Growth function of intervals in R. Let H be the set of intervals in R. The VC-
dimension of H is 2. Compute its shattering coefficient ΠH(m), m ≥ 0. Compare
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your result with the general bound for growth functions.

3.2 Lower bound on growth function. Prove that Sauer’s lemma (theorem 3.5) is
tight, i.e., for any set X of m > d elements, show that there exists a hypothesis
class H of VC-dimension d such that ΠH(m) =

∑d
i=0

(
m
i

)
.

3.3 Singleton hypothesis class. Consider the trivial hypothesis set H = {h0}.

(a) Show that Rm(H) = 0 for any m > 0.

(b) Use a similar construction to show that Massart’s lemma (theorem 3.3) is
tight.

3.4 Rademacher identities. Fix m ≥ 1. Prove the following identities for any α ∈ R

and any two hypothesis sets H and H ′ of functions mapping from X to R:

(a) Rm(αH) = |α|Rm(H).

(b) Rm(H + H ′) = Rm(H) + Rm(H ′).

(c) Rm({max(h, h′) : h ∈ H,h′ ∈ H ′}),
where max(h, h′) denotes the function x �→ maxx∈X (h(x), h′(x)) (Hint : you
could use the identity max(a, b) = 1

2 [a + b + |a − b|] valid for all a, b ∈ R and
Talagrand’s contraction lemma (see lemma 4.2)).

3.5 Rademacher complexity. Professor Jesetoo claims to have found a better bound
on the Rademacher complexity of any hypothesis set H of functions taking values
in {−1, +1}, in terms of its VC-dimension VCdim(H). His bound is of the form
Rm(H) ≤ O

(VCdim(H)
m

)
. Can you show that Professor Jesetoo’s claim cannot be

correct? (Hint : consider a hypothesis set H reduced to just two simple functions.)

3.6 VC-dimension of union of k intervals. What is the VC-dimension of subsets of
the real line formed by the union of k intervals?

3.7 VC-dimension of finite hypothesis sets. Show that the VC-dimension of a finite
hypothesis set H is at most log2 |H|.

3.8 VC-dimension of subsets. What is the VC-dimension of the set of subsets Iα of
the real line parameterized by a single parameter α: Iα = [α, α + 1] ∪ [α + 2, +∞)?

3.9 VC-dimension of closed balls in R
n. Show that the VC-dimension of the set

of all closed balls in R
n, i.e., sets of the form {x ∈ R

n : ‖x − x0‖2 ≤ r} for some
x0 ∈ R

n and r ≥ 0, is less than or equal to n + 2.
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3.10 VC-dimension of ellipsoids. What is the VC-dimension of the set of all ellipsoids
in R

n?

3.11 VC-dimension of a vector space of real functions. Let F be a finite-dimensional
vector space of real functions on R

n, dim(F ) = r < ∞. Let H be the set of
hypotheses:

H = {{x : f(x) ≥ 0} : f ∈ F}.

Show that d, the VC-dimension of H, is finite and that d ≤ r. (Hint : select an
arbitrary set of m = r + 1 points and consider linear mapping u : F → R

m defined
by: u(f) = (f(x1), . . . , f(xm)).)

3.12 VC-dimension of sine functions. Consider the hypothesis family of sine func-
tions (Example 3.5): {x → sin(ωx) : ω ∈ R} .

(a) Show that for any x ∈ R the points x, 2x, 3x and 4x cannot be shattered
by this family of sine functions.

(b) Show that the VC-dimension of the family of sine functions is infinite.
(Hint : show that {2−m : m ∈ N} can be fully shattered for any m > 0.)

3.13 VC-dimension of union of halfspaces. Determine the VC-dimension of the
subsets of the real line formed by the union of k intervals.

3.14 VC-dimension of intersection of halfspaces. Consider the class Ck of convex
intersections of k halfspaces. Give lower and upper bound estimates for VCdim(Ck).

3.15 VC-dimension of intersection concepts.

(a) Let C1 and C2 be two concept classes. Show that for any concept class
C = {c1 ∩ c2 : c1 ∈ C1, c2 ∈ C2},

ΠC(m) ≤ ΠC1(m) ΠC2(m). (3.55)

(b) Let C be a concept class with VC-dimension d and let Cs be the concept
class formed by all intersections of s concepts from C, s ≥ 1. Show that the
VC-dimension of Cs is bounded by 2ds log2(3s). (Hint : show that log2(3x) <

9x/(2e) for any x ≥ 2.)

3.16 VC-dimension of union of concepts. Let A and B be two sets of functions
mapping from X into {0, 1}, and assume that both A and B have finite VC-
dimension, with VCdim(A) = dA and VCdim(B) = dB . Let C = A ∪ B be the
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union of A and B.

(a) Prove that for all m, ΠC(m) ≤ ΠA(m) + ΠB(m).

(b) Use Sauer’s lemma to show that for m ≥ dA + dB + 2, ΠC(m) < 2m, and
give a bound on the VC-dimension of C.

3.17 VC-dimension of symmetric difference of concepts. For two sets A and B, let
AΔB denote the symmetric difference of A and B, i.e., AΔB = (A∪B)− (A∩B).
Let H be a non-empty family of subsets of X with finite VC-dimension. Let A be
an element of H and define HΔA = {XΔA : X ∈ H}. Show that

VCdim(HΔA) = VCdim(H).

3.18 Symmetric functions. A function h : {0, 1}n → {0, 1} is symmetric if its value
is uniquely determined by the number of 1’s in the input. Let C denote the set of
all symmetric functions.

(a) Determine the VC-dimension of C.

(b) Give lower and upper bounds on the sample complexity of any consistent
PAC learning algorithm for C.

(c) Note that any hypothesis h ∈ C can be represented by a vector (y0, y1, ..., yn) ∈
{0, 1}n+1, where yi is the value of h on examples having precisely i 1’s. Devise
a consistent learning algorithm for C based on this representation.

3.19 Biased coins. Professor Moent has two coins in his pocket, coin xA and coin
xB . Both coins are slightly biased, i.e., Pr[xA = 0] = 1/2 − ε/2 and Pr[xB = 0] =
1/2 + ε/2, where 0 < ε < 1 is a small positive number, 0 denotes heads and 1
denotes tails. He likes to play the following game with his students. He picks a coin
x ∈ {xA, xB} from his pocket uniformly at random, tosses it m times, reveals the
sequence of 0s and 1s he obtained and asks which coin was tossed. Determine how
large m needs to be for a student’s coin prediction error to be at most δ > 0.

(a) Let S be a sample of size m. Professor Moent’s best student, Oskar, plays
according to the decision rule fo : {0, 1}m → {xA, xB} defined by fo(S) = xA

iff N(S) < m/2, where N(S) is the number of 0’s in sample S.
Suppose m is even, then show that

error(fo) ≥ 1
2

Pr
[
N(S) ≥ m

2

∣∣∣x = xA

]
. (3.56)

(b) Assuming m even, use the inequalities given in the appendix (section D.3)
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to show that

error(fo) >
1
4

[
1 −

[
1 − e

− mε2

1−ε2

] 1
2
]
. (3.57)

(c) Argue that if m is odd, the probability can be lower bounded by using
m + 1 in the bound in (a) and conclude that for both odd and even m,

error(fo) >
1
4

[
1 −

[
1 − e

− 2�m/2�ε2

1−ε2

] 1
2
]
. (3.58)

(d) Using this bound, how large must m be if Oskar’s error is at most δ, where
0 < δ < 1/4. What is the asymptotic behavior of this lower bound as a function
of ε?

(e) Show that no decision rule f : {0, 1}m → {xa, xB} can do better than
Oskar’s rule fo. Conclude that the lower bound of the previous question applies
to all rules.

3.20 Infinite VC-dimension.

(a) Show that if a concept class C has infinite VC-dimension, then it is not
PAC-learnable.

(b) In the standard PAC-learning scenario, the learning algorithm receives all
examples first and then computes its hypothesis. Within that setting, PAC-
learning of concept classes with infinite VC-dimension is not possible as seen
in the previous question.
Imagine now a different scenario where the learning algorithm can alternate
between drawing more examples and computation. The objective of this prob-
lem is to prove that PAC-learning can then be possible for some concept classes
with infinite VC-dimension.
Consider for example the special case of the concept class C of all subsets of
natural numbers. Professor Vitres has an idea for the first stage of a learning
algorithm L PAC-learning C. In the first stage, L draws a sufficient number of
points m such that the probability of drawing a point beyond the maximum
value M observed be small with high confidence. Can you complete Professor
Vitres’ idea by describing the second stage of the algorithm so that it PAC-
learns C? The description should be augmented with the proof that L can
PAC-learn C.

3.21 VC-dimension generalization bound – realizable case. In this exercise we show
that the bound given in corollary 3.4 can be improved to O(d log(m/d)

m ) in the
realizable setting. Assume we are in the realizable scenario, i.e. the target concept is
included in our hypothesis class H. We will show that if a hypothesis h is consistent



60 Rademacher Complexity and VC-Dimension

with a sample S ∼ Dm then for any ε > 0 such that mε ≥ 8

Pr[R(h) > ε] ≤ 2
[2em

d

]d
2−mε/2 . (3.59)

(a) Let HS ⊆ H be the subset of hypotheses consistent with the sample S,
let R̂S(h) denote the empirical error with respect to the sample S and define
S′ as a another independent sample drawn from Dm. Show that the following
inequality holds for any h0 ∈ HS :

Pr
[

sup
h∈HS

|R̂S(h) − R̂S′(h)| >
ε

2

]
≥ Pr

[
B[m, ε] >

mε

2

]
Pr[R(h0) > ε] ,

where B[m, ε] is a binomial random variable with parameters [m, ε]. (Hint :
prove and use the fact that Pr[R̂(h) ≥ ε

2 ] ≥ Pr[R̂(h) > ε
2 ∧ R(h) > ε].)

(b) Prove that Pr
[
B(m, ε) > mε

2

]
≥ 1

2 . Use this inequality along with the
result from (a) to show that for any h0 ∈ HS

Pr
[
R(h0) > ε

]
≤ 2 Pr

[
sup

h∈HS

|R̂S(h) − R̂S′(h)| >
ε

2

]
.

(c) Instead of drawing two samples, we can draw one sample T of size 2m then
uniformly at random split it into S and S′. The right hand side of part (b) can
then be rewritten as:

Pr
[

sup
h∈HS

|R̂S(h)−R̂S′(h)| >
ε

2

]
= Pr

T∼D2m:
T→[S,S′]

[
∃h∈H : R̂S(h) = 0 ∧ R̂S′(h) >

ε

2

]
.

Let h0 be a hypothesis such that R̂T (h0) > ε
2 and let l > mε

2 be the total
number of errors h0 makes on T . Show that the probability of all l errors
falling into S′ is upper bounded by 2−l.

(d) Part (b) implies that for any h ∈ H

Pr
T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′(h) >

ε

2

∣∣∣ R̂T (h0) >
ε

2

]
≤ 2−l .

Use this bound to show that for any h ∈ H

Pr
T∼D2m:
T→(S,S′)

[
R̂S(h) = 0 ∧ R̂S′(h) >

ε

2

]
≤ 2−

εm
2 .

(e) Complete the proof of inequality (3.59) by using the union bound to upper
bound Pr T∼D2m:

T→(S,S′)

[
∃h∈H : R̂S(h) = 0 ∧ R̂S′(h) > ε

2

]
. Show that we can achieve

a high probability generalization bound that is of the order O(d log(m/d)
m ).
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3.22 Generalization bound based on covering numbers. Let H be a family of
functions mapping X to a subset of real numbers Y ⊆ R. For any ε > 0, the
covering number N (H, ε) of H for the L∞ norm is the minimal k ∈ N such that H

can be covered with k balls of radius ε, that is, there exists {h1, . . . , hk} ⊆ H such
that, for all h ∈ H, there exists i ≤ k with ‖h − hi‖∞ = maxx∈X |h(x) − hi(x)| ≤ ε.
In particular, when H is a compact set, a finite covering can be extracted from a
covering of H with balls of radius ε and thus N (H, ε) is finite.

Covering numbers provide a measure of the complexity of a class of functions: the
larger the covering number, the richer is the family of functions. The objective of
this problem is to illustrate this by proving a learning bound in the case of the
squared loss. Let D denote a distribution over X × Y according to which labeled
examples are drawn. Then, the generalization error of h ∈ H for the squared loss is
defined by R(h) = E(x,y)∼D[(h(x)−y)2] and its empirical error for a labeled sample
S = ((x1, y1), . . . , (xm, ym)) by R̂(h) = 1

m

∑m
i=1(h(xi)−yi)2. We will assume that H

is bounded, that is there exists M > 0 such that |h(x)−y| ≤ M for all (x, y) ∈ X×Y.
The following is the generalization bound proven in this problem:

Pr
S∼Dm

[
sup
h∈H

|R(h) − R̂(h)| ≥ ε
]
≤ N

(
H,

ε

8M

)
2 exp

(−mε2

2M4

)
. (3.60)

The proof is based on the following steps.

(a) Let LS = R(h) − R̂(h), then show that for all h1, h2 ∈ H and any labeled
sample S, the following inequality holds:

|LS(h1) − LS(h2)| ≤ 4M‖h1 − h2‖∞ .

(b) Assume that H can be covered by k subsets B1, . . . , Bk, that is H =
B1 ∪ . . .∪Bk. Then, show that, for any ε > 0, the following upper bound holds:

Pr
S∼Dm

[
sup
h∈H

|LS(h)| ≥ ε
]
≤

k∑
i=1

Pr
S∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ε
]
.

(c) Finally, let k = N (H, ε
8M ) and let B1, . . . , Bk be balls of radius ε/(8M)

centered at h1, . . . , hk covering H. Use part (a) to show that for all i ∈ [1, k],

Pr
S∼Dm

[
sup
h∈Bi

|LS(h)| ≥ ε
]
≤ Pr

S∼Dm

[
|LS(hi)| ≥ ε

2

]
,

and apply Hoeffding’s inequality (theorem D.1) to prove (3.60).





4 Support Vector Machines

This chapter presents one of the most theoretically well motivated and practically
most effective classification algorithms in modern machine learning: Support Vector
Machines (SVMs). We first introduce the algorithm for separable datasets, then
present its general version designed for non-separable datasets, and finally provide
a theoretical foundation for SVMs based on the notion of margin. We start with
the description of the problem of linear classification.

4.1 Linear classification

Consider an input space X that is a subset of R
N with N ≥ 1, and the output

or target space Y = {−1, +1}, and let f : X → Y be the target function. Given
a hypothesis set H of functions mapping X to Y, the binary classification task is
formulated as follows. The learner receives a training sample S of size m drawn i.i.d.
from X according to some unknown distribution D, S = ((x1, y1), . . . , (xm, ym)) ∈
(X × Y)m, with yi = f(xi) for all i ∈ [1,m]. The problem consists of determining a
hypothesis h ∈ H, a binary classifier , with small generalization error:

RD(h) = Pr
x∼D

[h(x) �= f(x)]. (4.1)

Different hypothesis sets H can be selected for this task. In view of the results
presented in the previous section, which formalized Occam’s razor principle, hy-
pothesis sets with smaller complexity — e.g., smaller VC-dimension or Rademacher
complexity — provide better learning guarantees, everything else being equal. A
natural hypothesis set with relatively small complexity is that of linear classifiers,
or hyperplanes, which can be defined as follows:

H = {x �→ sign(w · x + b) : w ∈ R
N , b ∈ R}. (4.2)

A hypothesis of the form x �→ sign(w ·x+ b) thus labels positively all points falling
on one side of the hyperplane w · x + b = 0 and negatively all others. The problem
is referred to as a linear classification problem.
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w·x+b=0
w·x+b=0

Figure 4.1 Two possible separating hyperplanes. The right-hand side figure shows
a hyperplane that maximizes the margin.

4.2 SVMs — separable case

In this section, we assume that the training sample S can be linearly separated,
that is, we assume the existence of a hyperplane that perfectly separates the
training sample into two populations of positively and negatively labeled points,
as illustrated by the left panel of figure 4.1. But there are then infinitely many
such separating hyperplanes. Which hyperplane should a learning algorithm select?
The solution returned by the SVM algorithm is the hyperplane with the maximum
margin, or distance to the closest points, and is thus known as the maximum-margin
hyperplane. The right panel of figure 4.1 illustrates that choice.

We will present later in this chapter a margin theory that provides a strong
justification for this solution. We can observe already, however, that the SVM
solution can also be viewed as the “safest” choice in the following sense: a test
point is classified correctly by a separating hyperplane with margin ρ even when
it falls within a distance ρ of the training samples sharing the same label; for the
SVM solution, ρ is the maximum margin and thus the “safest” value.

4.2.1 Primal optimization problem

We now derive the equations and optimization problem that define the SVM
solution. The general equation of a hyperplane in R

N is

w · x + b = 0, (4.3)

where w ∈ R
N is a non-zero vector normal to the hyperplane and b ∈ R a

scalar. Note that this definition of a hyperplane is invariant to non-zero scalar
multiplication. Hence, for a hyperplane that does not pass through any sample
point, we can scale w and b appropriately such that min(x,y)∈S |w · x + b| = 1.
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margin

w·x+b=+1
w·x+b=−1

w·x+b=0

Figure 4.2 Margin and equations of the hyperplanes for a canonical maximum-
margin hyperplane. The marginal hyperplanes are represented by dashed lines on
the figure.

We define this representation of the hyperplane, i.e., the corresponding pair (w, b),
as the canonical hyperplane. The distance of any point x0 ∈ R

N to a hyperplane
defined by (4.3) is given by

|w · x0 + b|
‖w‖ . (4.4)

Thus, for a canonical hyperplane, the margin ρ is given by

ρ = min
(x,y)∈S

|w · x + b|
‖w‖ =

1
‖w‖ . (4.5)

Figure 4.2 illustrates the margin for a maximum-margin hyperplane with a canon-
ical representation (w, b). It also shows the marginal hyperplanes, which are the
hyperplanes parallel to the separating hyperplane and passing through the closest
points on the negative or positive sides. Since they are parallel to the separating
hyperplane, they admit the same normal vector w. Furthermore, by definition of a
canonical representation, for a point x on a marginal hyperplane, |w · x + b| = 1,
and thus the equations of the marginal hyperplanes are w · x + b = ±1.

A hyperplane defined by (w, b) correctly classifies a training point xi, i ∈ [1,m]
when w · xi + b has the same sign as yi. For a canonical hyperplane, by definition,
we have |w · xi + b| ≥ 1 for all i ∈ [1,m]; thus, xi is correctly classified when
yi(w ·xi +b) ≥ 1. In view of (4.5), maximizing the margin of a canonical hyperplane
is equivalent to minimizing ‖w‖ or 1

2‖w‖2. Thus, in the separable case, the SVM
solution, which is a hyperplane maximizing the margin while correctly classifying all
training points, can be expressed as the solution to the following convex optimization
problem:
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min
w,b

1
2
‖w‖2 (4.6)

subject to: yi(w · xi + b) ≥ 1, ∀i ∈ [1,m] .

The objective function F : w �→ 1
2‖w‖2 is infinitely differentiable. Its gradient is

∇w(F ) = w and its Hessian the identity matrix ∇2F (w) = I, whose eigenvalues are
strictly positive. Therefore, ∇2F (w) � 0 and F is strictly convex. The constraints
are all defined by affine functions gi : (w, b) �→ 1−yi(w·xi+b) and are thus qualified.
Thus, in view of the results known for convex optimization (see appendix B for
details), the optimization problem of (4.6) admits a unique solution, an important
and favorable property that does not hold for all learning algorithms.

Moreover, since the objective function is quadratic and the constraints affine, the
optimization problem of (4.6) is in fact a specific instance of quadratic program-
ming (QP), a family of problems extensively studied in optimization. A variety of
commercial and open-source solvers are available for solving convex QP problems.
Additionally, motivated by the empirical success of SVMs along with its rich theo-
retical underpinnings, specialized methods have been developed to more efficiently
solve this particular convex QP problem, notably the block coordinate descent al-
gorithms with blocks of just two coordinates.

4.2.2 Support vectors

The constraints are affine and thus qualified. The objective function as well as the
affine constraints are convex and differentiable. Thus, the hypotheses of theorem B.8
hold and the KKT conditions apply at the optimum. We shall use these conditions
to both analyze the algorithm and demonstrate several of its crucial properties,
and subsequently derive the dual optimization problem associated to SVMs in
section 4.2.3.

We introduce Lagrange variables αi ≥ 0, i ∈ [1,m], associated to the m

constraints and denote by α the vector (α1, . . . , αm)�. The Lagrangian can then be
defined for all w ∈ R

N , b ∈ R, and α ∈ R
m
+ , by

L(w, b,α) =
1
2
‖w‖2 −

m∑
i=1

αi[yi(w · xi + b) − 1] . (4.7)

The KKT conditions are obtained by setting the gradient of the Lagrangian with
respect to the primal variables w and b to zero and by writing the complementarity
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conditions:

∇wL = w −
m∑

i=1

αiyixi = 0 =⇒ w =
m∑

i=1

αiyixi (4.8)

∇bL = −
m∑

i=1

αiyi = 0 =⇒
m∑

i=1

αiyi = 0 (4.9)

∀i, αi[yi(w · xi + b) − 1] = 0 =⇒ αi = 0 ∨ yi(w · xi + b) = 1. (4.10)

By equation 4.8, the weight vector w solution of the SVM problem is a linear combi-
nation of the training set vectors x1, . . . ,xm. A vector xi appears in that expansion
iff αi �= 0. Such vectors are called support vectors. By the complementarity condi-
tions (4.10), if αi �= 0, then yi(w · xi + b) = 1. Thus, support vectors lie on the
marginal hyperplanes w · xi + b = ±1.

Support vectors fully define the maximum-margin hyperplane or SVM solution,
which justifies the name of the algorithm. By definition, vectors not lying on the
marginal hyperplanes do not affect the definition of these hyperplanes — in their
absence, the solution to the SVM problem remains unchanged. Note that while the
solution w of the SVM problem is unique, the support vectors are not. In dimension
N , N + 1 points are sufficient to define a hyperplane. Thus, when more than N + 1
points lie on a marginal hyperplane, different choices are possible for the N + 1
support vectors.

4.2.3 Dual optimization problem

To derive the dual form of the constrained optimization problem (4.6), we plug
into the Lagrangian the definition of w in terms of the dual variables as expressed
in (4.8) and apply the constraint (4.9). This yields

L =
1
2
‖

m∑
i=1

αiyixi‖2 −
m∑

i,j=1

αiαjyiyj(xi · xj)︸ ︷︷ ︸
− 1

2

Pm
i,j=1 αiαjyiyj(xi·xj)

−
m∑

i=1

αiyib︸ ︷︷ ︸
0

+
m∑

i=1

αi , (4.11)

which simplifies to

L =
m∑

i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj(xi · xj) . (4.12)
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This leads to the following dual optimization problem for SVMs in the separable
case:

max
α

m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj(xi · xj) (4.13)

subject to: αi ≥ 0 ∧
m∑

i=1

αiyi = 0, ∀i ∈ [1,m] .

The objective function G : α �→ ∑m
i=1 αi − 1

2

∑m
i,j=1 αiαjyiyj(xi · xj) is infinitely

differentiable. Its Hessian is given by ∇2G = −A, with A =
(
yixi · yjxj

)
ij

. A is
the Gram matrix associated to the vectors y1x1, . . . , ymxm and is therefore positive
semidefinite, which shows that ∇2G � 0 and that G is a concave function. Since
the constraints are affine and convex, the maximization problem (4.13) is equivalent
to a convex optimization problem. Since G is a quadratic function of α, this dual
optimization problem is also a QP problem, as in the case of the primal optimization
and once again both general-purpose and specialized QP solvers can be used to
obtain the solution (see exercise 4.4 for details on the SMO algorithm, which is
often used to solve the dual form of the SVM problem in the more general non-
separable setting).

Moreover, since the constraints are affine, they are qualified and strong duality
holds (see appendix B). Thus, the primal and dual problems are equivalent, i.e.,
the solution α of the dual problem (4.13) can be used directly to determine the
hypothesis returned by SVMs, using equation (4.8):

h(x) = sgn(w · x + b) = sgn
( m∑

i=1

αiyi(xi · x) + b
)
. (4.14)

Since support vectors lie on the marginal hyperplanes, for any support vector xi,
w · xi + b = yi, and thus b can be obtained via

b = yi −
m∑

j=1

αjyj(xj · xi) . (4.15)

The dual optimization problem (4.13) and the expressions (4.14) and (4.15) reveal
an important property of SVMs: the hypothesis solution depends only on inner
products between vectors and not directly on the vectors themselves.

Equation (4.15) can now be used to derive a simple expression of the margin ρ in
terms of α. Since (4.15) holds for all i with αi �= 0, multiplying both sides by αiyi

and taking the sum leads to
m∑

i=1

αiyib =
m∑

i=1

αiy
2
i −

m∑
i,j=1

αiαjyiyj(xi · xj) . (4.16)
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Using the fact that y2
i = 1 along with equation 4.8 then yields

0 =
m∑

i=1

αi − ‖w‖2. (4.17)

Noting that αi ≥ 0, we obtain the following expression of the margin ρ in terms of
the L1 norm of α:

ρ2 =
1

‖w‖2
2

=
1∑m

i=1 αi
=

1
‖α‖1

. (4.18)

4.2.4 Leave-one-out analysis

We now use the notion of leave-one-out error to derive a first learning guarantee
for SVMs based on the fraction of support vectors in the training set.

Definition 4.1 Leave-one-out error
Let hS denote the hypothesis returned by a learning algorithm A, when trained on
a fixed sample S. Then, the leave-one-out error of A on a sample S of size m is
defined by

R̂LOO(A) =
1
m

m∑
i=1

1hS−{xi}(xi) �=yi
.

Thus, for each i ∈ [1,m], A is trained on all the points in S except for xi, i.e.,
S − {xi}, and its error is then computed using xi. The leave-one-out error is the
average of these errors. We will use an important property of the leave-one-out error
stated in the following lemma.

Lemma 4.1

The average leave-one-out error for samples of size m ≥ 2 is an unbiased estimate
of the average generalization error for samples of size m − 1:

E
S∼Dm

[R̂LOO(A)] = E
S′∼Dm−1

[R(hS′)], (4.19)

where D denotes the distribution according to which points are drawn.
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Proof By the linearity of expectation, we can write

E
S∼Dm

[R̂LOO(A)] =
1
m

m∑
i=1

E
S∼Dm

[1hS−{xi}(xi) �=yi
]

= E
S∼Dm

[1hS−{x1}(x1) �=y1 ]

= E
S′∼Dm−1,x1∼D

[1hS′ (x1) �=y1 ]

= E
S′∼Dm−1

[ E
x1∼D

[1hS′ (x1) �=y1 ]]

= E
S′∼Dm−1

[R(hS′)].

For the second equality, we used the fact that, since the points of S are drawn in an
i.i.d. fashion, the expectation ES∼Dm [1hS−{xi}(xi) �=yi

] does not depend on the choice
of i ∈ [1,m] and is thus equal to ES∼Dm [1hS−{x1}(x1) �=y1 ].

In general, computing the leave-one-out error may be costly since it requires training
m times on samples of size m−1. In some situations however, it is possible to derive
the expression of R̂loo(A) much more efficiently (see exercise 10.9).

Theorem 4.1

Let hS be the hypothesis returned by SVMs for a sample S, and let NSV (S) be the
number of support vectors that define hS. Then,

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[
NSV(S)
m + 1

]
.

Proof Let S be a linearly separable sample of m + 1. If x is not a support vector
for hS , removing it does not change the SVM solution. Thus, hS−{x} = hS and
hS−{x} correctly classifies x. By contraposition, if hS−{x} misclassifies x, x must be
a support vector, which implies

R̂loo(SVM) ≤ NSV(S)
m + 1

. (4.20)

Taking the expectation of both sides and using lemma 4.1 yields the result.

Theorem 4.1 gives a sparsity argument in favor of SVMs: the average error of
the algorithm is upper bounded by the average fraction of support vectors. One
may hope that for many distributions seen in practice, a relatively small number
of the training points will lie on the marginal hyperplanes. The solution will then
be sparse in the sense that a small fraction of the dual variables αi will be non-
zero. Note, however, that this bound is relatively weak since it applies only to the
average generalization error of the algorithm over all samples of size m. It provides
no information about the variance of the generalization error. In section 4.4, we
present stronger high-probability bounds using a different argument based on the
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ξi

ξj

w·x+b=+1

w·x+b=−1

w·x+b=0

Figure 4.3 A separating hyperplane with point xi classified incorrectly and point
xj correctly classified, but with margin less than 1.

notion of margin.

4.3 SVMs — non-separable case

In most practical settings, the training data is not linearly separable, i.e., for any
hyperplane w · x + b = 0, there exists xi ∈ S such that

yi [w · xi + b] �≥ 1 . (4.21)

Thus, the constraints imposed in the linearly separable case discussed in section 4.2
cannot all hold simultaneously. However, a relaxed version of these constraints can
indeed hold, that is, for each i ∈ [1,m], there exist ξi ≥ 0 such that

yi [w · xi + b] ≥ 1 − ξi . (4.22)

The variables ξi are known as slack variables and are commonly used in optimization
to define relaxed versions of some constraints. Here, a slack variable ξi measures
the distance by which vector xi violates the desired inequality, yi(w · xi + b) ≥ 1.
Figure 4.3 illustrates the situation. For a hyperplane w · x + b = 0, a vector xi

with ξi > 0 can be viewed as an outlier . Each xi must be positioned on the correct
side of the appropriate marginal hyperplane to not be considered an outlier. As a
consequence, a vector xi with 0 < yi(w · xi + b) < 1 is correctly classified by the
hyperplane w·x+b = 0 but is nonetheless considered to be an outlier, that is, ξi > 0.
If we omit the outliers, the training data is correctly separated by w · x + b = 0
with a margin ρ = 1/‖w‖ that we refer to as the soft margin, as opposed to the
hard margin in the separable case.

How should we select the hyperplane in the non-separable case? One idea consists
of selecting the hyperplane that minimizes the empirical error. But, that solution
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0/1 loss function

Hinge loss

Quadratic hinge loss
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Figure 4.4 Both the hinge loss and the quadratic hinge loss provide convex upper
bounds on the binary zero-one loss.

will not benefit from the large-margin guarantees we will present in section 4.4.
Furthermore, the problem of determining a hyperplane with the smallest zero-one
loss, that is the smallest number of misclassifications, is NP-hard as a function of
the dimension N of the space.

Here, there are two conflicting objectives: on one hand, we wish to limit the
total amount of slack due to outliers, which can be measured by

∑m
i=1 ξi, or, more

generally by
∑m

i=1 ξp
i for some p ≥ 1; on the other hand, we seek a hyperplane with

a large margin, though a larger margin can lead to more outliers and thus larger
amounts of slack.

4.3.1 Primal optimization problem

This leads to the following general optimization problem defining SVMs in the
non-separable case where the parameter C ≥ 0 determines the trade-off between
margin-maximization (or minimization of ‖w‖2) and the minimization of the slack
penalty

∑m
i=1 ξp

i :

min
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξp
i (4.23)

subject to yi(w · xi + b) ≥ 1 − ξi ∧ ξi ≥ 0, i ∈ [1,m] ,

where ξ = (ξ1, . . . , ξm)�. The parameter C is typically determined via n-fold cross-
validation (see section 1.3).

As in the separable case, (4.23) is a convex optimization problem since the
constraints are affine and thus convex and since the objective function is convex
for any p ≥ 1. In particular, ξ �→∑m

i=1 ξp
i = ‖ξ‖p

p is convex in view of the convexity
of the norm ‖ · ‖p.
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There are many possible choices for p leading to more or less aggressive penal-
izations of the slack terms (see exercise 4.1). The choices p = 1 and p = 2 lead to
the most straightforward solutions and analyses. The loss functions associated with
p = 1 and p = 2 are called the hinge loss and the quadratic hinge loss, respectively.
Figure 4.4 shows the plots of these loss functions as well as that of the standard
zero-one loss function. Both hinge losses are convex upper bounds on the zero-one
loss, thus making them well suited for optimization. In what follows, the analysis is
presented in the case of the hinge loss (p = 1), which is the most widely used loss
function for SVMs.

4.3.2 Support vectors

As in the separable case, the constraints are affine and thus qualified. The objective
function as well as the affine constraints are convex and differentiable. Thus, the
hypotheses of theorem B.8 hold and the KKT conditions apply at the optimum.
We use these conditions to both analyze the algorithm and demonstrate several
of its crucial properties, and subsequently derive the dual optimization problem
associated to SVMs in section 4.3.3.

We introduce Lagrange variables αi ≥ 0, i ∈ [1,m], associated to the first m

constraints and βi ≥ 0, i ∈ [1,m] associated to the non-negativity constraints of
the slack variables. We denote by α the vector (α1, . . . , αm)� and by β the vector
(β1, . . . , βm)�. The Lagrangian can then be defined for all w ∈ R

N , b ∈ R, and
α ∈ R

m
+ , by

L(w, b, ξ, α,β) =
1
2
‖w‖2 +C

m∑
i=1

ξi−
m∑

i=1

αi[yi(w ·xi +b)−1+ξi]−
m∑

i=1

βiξi . (4.24)

The KKT conditions are obtained by setting the gradient of the Lagrangian
with respect to the primal variables w, b, and ξis to zero and by writing the
complementarity conditions:

∇wL = w −
m∑

i=1

αiyixi = 0 =⇒ w =
m∑

i=1

αiyixi (4.25)

∇bL = −
m∑

i=1

αiyi = 0 =⇒
m∑

i=1

αiyi = 0 (4.26)

∇ξiL = C − αi − βi = 0 =⇒ αi + βi = C (4.27)

∀i, αi[yi(w · xi + b) − 1 + ξi] = 0 =⇒ αi = 0 ∨ yi(w · xi + b) = 1 − ξi (4.28)

∀i, βiξi = 0 =⇒ βi = 0 ∨ ξi = 0 . (4.29)

By equation 4.25, as in the separable case, the weight vector w solution of the
SVMproblem is a linear combination of the training set vectors x1, . . . ,xm. A vector
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xi appears in that expansion iff αi �= 0. Such vectors are called support vectors. Here,
there are two types of support vectors. By the complementarity condition (4.28), if
αi �= 0, then yi(w · xi + b) = 1 − ξi. If ξi = 0, then yi(w · xi + b) = 1 and xi lies
on a marginal hyperplane, as in the separable case. Otherwise, ξi �= 0 and xi is an
outlier. In this case, (4.29) implies βi = 0 and (4.27) then requires αi = C. Thus,
support vectors xi are either outliers, in which case αi = C, or vectors lying on the
marginal hyperplanes. As in the separable case, note that while the weight vector
w solution is unique, the support vectors are not.

4.3.3 Dual optimization problem

To derive the dual form of the constrained optimization problem (4.23), we plug
into the Lagrangian the definition of w in terms of the dual variables (4.25) and
apply the constraint (4.26). This yields

L =
1
2
‖

m∑
i=1

αiyixi‖2 −
m∑

i,j=1

αiαjyiyj(xi · xj)︸ ︷︷ ︸
− 1

2

Pm
i,j=1 αiαjyiyj(xi·xj)

−
m∑

i=1

αiyib︸ ︷︷ ︸
0

+
m∑

i=1

αi . (4.30)

Remarkably, we find that the objective function is no different than in the separable
case:

L =
m∑

i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj(xi · xj) . (4.31)

However, here, in addition to αi ≥ 0, we must impose the constraint on the Lagrange
variables βi ≥ 0. In view of (4.27), this is equivalent to αi ≤ C. This leads to the
following dual optimization problem for SVMs in the non-separable case, which only
differs from that of the separable case (4.13) by the constraints αi ≤ C:

max
α

m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyj(xi · xj) (4.32)

subject to: 0 ≤ αi ≤ C ∧
m∑

i=1

αiyi = 0, i ∈ [1,m].

Thus, our previous comments about the optimization problem (4.13) apply to (4.32)
as well. In particular, the objective function is concave and infinitely differentiable
and (4.32) is equivalent to a convex QP. The problem is equivalent to the primal
problem (4.23).

The solution α of the dual problem (4.32) can be used directly to determine the
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hypothesis returned by SVMs, using equation (4.25):

h(x) = sgn(w · x + b) = sgn
( m∑

i=1

αiyi(xi · x) + b
)
. (4.33)

Moreover, b can be obtained from any support vector xi lying on a marginal
hyperplane, that is any vector xi with 0 < αi < C. For such support vectors,
w · xi + b = yi and thus

b = yi −
m∑

j=1

αjyj(xj · xi) . (4.34)

As in the separable case, the dual optimization problem (4.32) and the expressions
(4.33) and (4.34) show an important property of SVMs: the hypothesis solution
depends only on inner products between vectors and not directly on the vectors
themselves. This fact can be used to extend SVMs to define non-linear decision
boundaries, as we shall see in chapter 5.

4.4 Margin theory

This section presents generalization bounds based on the notion of margin, which
provide a strong theoretical justification for the SVM algorithm. We first give the
definitions of some basic margin concepts.

Definition 4.2 Margin
The geometric margin ρ(x) of a point x with label y with respect to a linear classifier
h : x �→ w · x + b is its distance to the hyperplane w · x + b = 0:

ρ(x) =
y (w · x + b)

‖w‖ . (4.35)

The margin of a linear classifier h for a sample S = (x1, . . . ,xm) is the minimum
margin over the points in the sample:

ρ = min
1≤i≤m

yi (w · xi + b)
‖w‖ . (4.36)

Recall that the VC-dimension of the family of hyperplanes or linear hypotheses in
R

N is N+1. Thus, the application of the VC-dimension bound (3.31) of corollary 3.4
to this hypothesis set yields the following: for any δ > 0, with probability at least
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1 − δ, for any h ∈ H,

R(h) ≤ R̂(h) +

√
2(N + 1) log em

N+1

m
+

√
log 1

δ

2m
. (4.37)

When the dimension of the feature space N is large compared to the sample size,
this bound is uninformative. The following theorem presents instead a bound on the
VC-dimension of canonical hyperplanes that does not depend on the dimension of
feature space N , but only on the margin and the radius r of the sphere containing
the data.

Theorem 4.2

Let S ⊆ {x : ‖x‖ ≤ r}. Then, the VC-dimension d of the set of canonical hyperplanes
{x �→ sgn(w · x) : minx∈S |w · x| = 1 ∧ ‖w‖ ≤ Λ} verifies

d ≤ r2Λ2 .

Proof Assume {x1, . . . ,xd} is a set that can be fully shattered. Then, for all
y = (y1, . . . , yd) ∈ {−1, +1}d, there exists w such that,

∀i ∈ [1, d], 1 ≤ yi(w · xi) .

Summing up these inequalities yields

d ≤ w ·
d∑

i=1

yixi ≤ ‖w‖‖
d∑

i=1

yixi‖ ≤ Λ‖
d∑

i=1

yixi‖ .

Since this inequality holds for all y ∈ {−1, +1}d, it also holds on expectation over
y1, . . . , yd drawn i.i.d. according to a uniform distribution over {−1, +1}. In view of
the independence assumption, for i �= j we have E[yiyj ] = E[yi] E[yj ]. Thus, since
the distribution is uniform, E[yiyj ] = 0 if i �= j, E[yiyj ] = 1 otherwise. This gives

d ≤ Λ E
y
[‖

d∑
i=1

yixi‖] (taking expectations)

≤ Λ
[
E
y
[‖

d∑
i=1

yixi‖2]
]1/2

(Jensen’s inequality)

= Λ
[ d∑

i,j=1

E
y
[yiyj ](xi · xj)

]1/2

= Λ
[ d∑

i=1

(xi · xi)
]1/2 ≤ Λ

[
dr2
]1/2 = Λr

√
d.

Thus,
√

d ≤ Λr, which completes the proof.
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When the training data is linearly separable, by the results of section 4.2, the
maximum-margin canonical hyperplane with ‖w‖ = 1/ρ can be plugged into
theorem 4.2. In this case, Λ can be set to 1/ρ, and the upper bound can be rewritten
as r2/ρ2. Note that the choice of Λ must be made before receiving the sample S.

It is also possible to bound the Rademacher complexity of linear hypotheses with
bounded weight vector in a similar way, as shown by the following theorem.

Theorem 4.3

Let S ⊆ {x : ‖x‖ ≤ R} be a sample of size m and let H = {x �→ w · x : ‖w‖ ≤ Λ}.
Then, the empirical Rademacher complexity of H can be bounded as follows:

R̂S(H) ≤
√

r2Λ2

m
.

Proof The proof follows through a series of inequalities similar to those of theo-
rem 4.2:

R̂S(H) =
1
m

E
σ

[ m∑
i=1

σiw · xi

]
=

1
m

E
σ

[
w ·

m∑
i=1

σixi

]
≤ Λ

m
E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥]
≤ Λ

m

[
E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥2]]1/2

=
Λ
m

[
E
σ

[ m∑
i,j=1

σiσj(xi · xj)
]]1/2

≤ Λ
m

[ m∑
i=1

‖xi‖2

]1/2

≤ Λ
√

mr2

m
=

√
r2Λ2

m
,

The first inequality makes use of the Cauchy-Schwarz inequality and the bound on
‖w‖, the second follows by Jensen’s inequality, the third by E[σiσj ] = E[σi] E[σj ] =
0 for i �= j, and the last one by ‖xi‖ ≤ R.

To present the main margin-based generalization bounds of this section, we need
to introduce a margin loss function. Here, the training data is not assumed to be
separable. The quantity ρ > 0 should thus be interpreted as the margin we wish to
achieve.

Definition 4.3 Margin loss function
For any ρ > 0, the ρ-margin loss is the function Lρ : R × R → R+ defined for all
y, y′ ∈ R by Lρ(y, y′) = Φρ(yy′) with,

Φρ(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if ρ ≤ x

1 − x/ρ if 0 ≤ x ≤ ρ

1 if x ≤ 0 .

This loss function is illustrated in figure 4.5. The empirical margin loss is then
defined as the margin loss over the training sample.
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1

0 ρ 1

Figure 4.5 The margin loss, defined with respect to margin parameter ρ.

Definition 4.4 Empirical margin loss
Given a sample S = (x1, . . . , xm) and a hypothesis h, the empirical margin loss is
defined by

R̂ρ(h) =
1
m

m∑
i=1

Φρ(yih(xi)) . (4.38)

Note that for any i ∈ [1,m], Φρ(yih(xi)) ≤ 1yih(xi)≤ρ. Thus, the empirical margin
loss can be upper-bounded as follows:

R̂ρ(h) ≤ 1
m

m∑
i=1

1yih(xi)≤ρ . (4.39)

In all the results that follow, the empirical margin loss can be replaced by this upper
bound, which admits a simple interpretation: it is the fraction of the points in the
training sample S that have been misclassified or classified with confidence less than
ρ. When h is a linear function defined by a weight vector w with ‖w‖ = 1, yih(xi)
is the margin of point xi. Thus, the upper bound is then the fraction of the points
in the training data with margin less than ρ. This corresponds to the loss function
indicated by the blue dotted line in figure 4.5.

The slope of the function Φρ defining the margin loss is at most 1/ρ, thus Φρ is
1/ρ-Lipschitz. The following lemma bounds the empirical Rademacher complexity
of a hypothesis set H after composition with such a Lipschitz function in terms of
the empirical Rademacher complexity of H. It will be needed for the proof of the
margin-based generalization bound.

Lemma 4.2 Talagrand’s lemma
Let Φ: R → R be an l-Lipschitz. Then, for any hypothesis set H of real-valued
functions, the following inequality holds:

R̂S(Φ ◦ H) ≤ l R̂S(H) .
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Proof First we fix a sample S = (x1, . . . , xm), then, by definition,

R̂S(Φ ◦ H) =
1
m

E
σ

[
sup
h∈H

m∑
i=1

σi(Φ ◦ h)(xi)
]

=
1
m

E
σ1,...,σm−1

[
E
σm

[
sup
h∈H

um−1(h) + σm(Φ ◦ h)(xm)
]]

,

where um−1(h) =
∑m−1

i=1 σi(Φ◦h)(xi). By definition of the supremum, for any ε > 0,
there exist h1, h2 ∈ H such that

um−1(h1) + (Φ ◦ h1)(xm) ≥ (1 − ε)
[

sup
h∈H

um−1(h) + (Φ ◦ h)(xm)
]

and um−1(h2) − (Φ ◦ h2)(xm) ≥ (1 − ε)
[

sup
h∈H

um−1(h) − (Φ ◦ h)(xm)
]
.

Thus, for any ε > 0, by definition of Eσm
,

(1 − ε) E
σm

[
sup
h∈H

um−1(h) + σm(Φ ◦ h)(xm)
]

= (1 − ε)
[1
2

sup
h∈H

um−1(h) + (Φ ◦ h)(xm) +
1
2

sup
h∈H

um−1(h) − (Φ ◦ h)(xm)
]

≤ 1
2
[um−1(h1) + (Φ ◦ h1)(xm)] +

1
2
[um−1(h2) − (Φ ◦ h2)(xm)].

Let s = sgn(h1(xm) − h2(xm)). Then, the previous inequality implies

(1 − ε) E
σm

[
sup
h∈H

um−1(h) + σm(Φ ◦ h)(xm)
]

≤ 1
2
[um−1(h1) + um−1(h2) + sl(h1(xm) − h2(xm))] (Lipschitz property)

=
1
2
[um−1(h1) + slh1(xm)] +

1
2
[um−1(h2) − slh2(xm)] (rearranging)

≤ 1
2

sup
h∈H

[um−1(h) + slh(xm)] +
1
2

sup
h∈H

[um−1(h) − slh(xm)] (definition of sup)

= E
σm

[
sup
h∈H

um−1(h) + σmlh(xm)
]
. (definition of E

σm

)

Since the inequality holds for all ε > 0, we have

E
σm

[
sup
h∈H

um−1(h) + σm(Φ ◦ h)(xm)
]
≤ E

σm

[
sup
h∈H

um−1(h) + σmlh(xm)
]
.

Proceeding in the same way for all other σis (i �= m) proves the lemma.

The following is a general margin-based generalization bound that will be used
in the analysis of several algorithms.
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Theorem 4.4 Margin bound for binary classification
Let H be a set of real-valued functions. Fix ρ > 0, then, for any δ > 0, with
probability at least 1 − δ, each of the following holds for all h ∈ H:

R(h) ≤ R̂ρ(h) +
2
ρ
Rm(H) +

√
log 1

δ

2m
(4.40)

R(h) ≤ R̂ρ(h) +
2
ρ
R̂S(H) + 3

√
log 2

δ

2m
. (4.41)

Proof Let H̃ = {z = (x, y) �→ yh(x) : h ∈ H}. Consider the family of functions
taking values in [0, 1]:

H̃ = {Φρ ◦ f : f ∈ H̃} .

By theorem 3.1, with probability at least 1 − δ, for all g ∈ H̃,

E[g(z)] ≤ 1
m

m∑
i=1

g(zi) + 2Rm(H̃) +

√
log 1

δ

2m
,

and thus, for all h ∈ H,

E[Φρ(yh(x))] ≤ R̂ρ(h) + 2Rm

(
Φρ ◦ H̃

)
+

√
log 1

δ

2m
.

Since 1u≤0 ≤ Φρ(u) for all u ∈ R, we have R(h) = E[1yh(x)≤0] ≤ E[Φρ(yh(x))], thus

R(h) ≤ R̂ρ(h) + 2Rm

(
Φρ ◦ H̃

)
+

√
log 1

δ

2m
.

Rm is invariant to a constant shift, therefore we have

Rm

(
Φρ ◦ H̃

)
= Rm

(
(Φρ − 1) ◦ H̃

)
.

Since (Φρ − 1)(0) = 0 and since (Φρ − 1) is 1/ρ-Lipschitz as with Φρ, by lemma 4.2,
we have Rm

(
Φρ ◦ H̃

) ≤ 1
ρRm(H̃) and Rm(H̃) can be rewritten as follows:

Rm(H̃) =
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σiyih(xi)
]

=
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σih(xi)
]

= Rm

(
H
)
.

This proves (4.40). The second inequality, (4.41), can be derived in the same way
by using the second inequality of theorem 3.1, (3.4), instead of (3.3).

The generalization bounds of theorem 4.4 shows the conflict between two terms:
the larger the desired margin ρ, the smaller the middle term; however, the first
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term, the empirical margin loss R̂ρ, increases as a function of ρ. The bounds of
this theorem can be generalized to hold uniformly for all ρ > 0 at the cost of an

additional term
√

log log2
2
ρ

m , as shown in the following theorem (a version of this
theorem with better constants can be derived, see exercise 4.2).

Theorem 4.5

Let H be a set of real-valued functions. Then, for any δ > 0, with probability at least
1 − δ, each of the following holds for all h ∈ H and ρ ∈ (0, 1):

R(h) ≤ R̂ρ(h) +
4
ρ
Rm(H) +

√
log log2

2
ρ

m
+

√
log 2

δ

2m
(4.42)

R(h) ≤ R̂ρ(h) +
4
ρ
R̂S(H) +

√
log log2

2
ρ

m
+ 3

√
log 4

δ

2m
. (4.43)

Proof Consider two sequences (ρk)k≥1 and (εk)k≥1, with εk ∈ (0, 1). By theo-
rem 4.4, for any fixed k ≥ 1,

Pr
[
R(h) − R̂ρk

(h) >
2
ρk

Rm(H) + εk

]
≤ exp(−2mε2k). (4.44)

Choose εk = ε +
√

log k
m , then, by the union bound,

Pr
[
∃k : R(h) − R̂ρk

(h) >
2
ρk

Rm(H) + εk

]
≤
∑
k≥1

exp(−2mε2k)

=
∑
k≥1

exp
[− 2m(ε +

√
(log k)/m)2

]
≤
∑
k≥1

exp(−2mε2) exp(−2 log k)

=
(∑

k≥1

1/k2
)
exp(−2mε2)

=
π2

6
exp(−2mε2) ≤ 2 exp(−2mε2).

We can choose ρk = 1/2k. For any ρ ∈ (0, 1), there exists k ≥ 1 such that
ρ ∈ (ρk, ρk−1], with ρ0 = 1. For that k, ρ ≤ ρk−1 = 2ρk, thus 1/ρk ≤ 2/ρ

and log k =
√

log log2(1/ρk) ≤ √
log log2(2/ρ). Furthermore, for any h ∈ H,

R̂ρk
(h) ≤ R̂ρ(h). Thus,

Pr

[
∃k : R(h) − R̂ρ(h) >

4
ρ
Rm(H) +

√
log log2(2/ρ)

m
+ ε

]
≤ 2 exp(−2mε2),

which proves the first statement. The second statement can be proven in a similar
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way.

Combining theorem 4.3 and theorem 4.4 gives directly the following general
margin bound for linear hypotheses with bounded weight vectors, presented in
corollary 4.1.

Corollary 4.1

Let H = {x �→ w · x : ‖w‖ ≤ Λ} and assume that X ⊆ {x : ‖x‖ ≤ r}. Fix ρ > 0,
then, for any δ > 0, with probability at least 1 − δ, for any h ∈ H,

R(h) ≤ R̂ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
. (4.45)

As with theorem 4.4, the bound of this corollary can be generalized to hold uniformly

for all ρ > 0 at the cost of an additional term
√

log log2
2
ρ

m by combining theorems 4.3
and 4.5. This generalization bound for linear hypotheses is remarkable, since it does
not depend directly on the dimension of the feature space, but only on the margin.
It suggests that a small generalization error can be achieved when ρ/r is large (small
second term) while the empirical margin loss is relatively small (first term). The
latter occurs when few points are either classified incorrectly or correctly, but with
margin less than ρ.

The fact that the guarantee does not explicitly depend on the dimension of the
feature space may seem surprising and appear to contradict the VC-dimension lower
bounds of theorems 3.6 and 3.7. Those lower bounds show that for any learning
algorithm A there exists a bad distribution for which the error of the hypothesis
returned by the algorithm is Ω(

√
d/m) with a non-zero probability. The bound of

the corollary does not rule out such bad cases, however: for such bad distributions,
the empirical margin loss would be large even for a relatively small margin ρ, and
thus the bound of the corollary would be loose in that case.

Thus, in some sense, the learning guarantee of the corollary hinges upon the
hope of a good margin value ρ: if there exists a relatively large margin value
ρ > 0 for which the empirical margin loss is small, then a small generalization
error is guaranteed by the corollary. This favorable margin situation depends on the
distribution: while the learning bound is distribution-independent, the existence of
a good margin is in fact distribution-dependent. A favorable margin seems to appear
relatively often in applications.

The bound of the corollary gives a strong justification for margin-maximization
algorithms such as SVMs. First, note that for ρ = 1, the margin loss can be upper
bounded by the hinge loss:

∀x ∈ R, Φ1(x) ≤ max(1 − x, 0). (4.46)
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Using this fact, the bound of the corollary implies that with probability at least
1 − δ, for all h ∈ H = {x �→ w · x : ‖w‖ ≤ Λ},

R(h) ≤ 1
m

m∑
i=1

ξi + 2

√
r2Λ2

m
+

√
log 1

δ

2m
, (4.47)

where ξi = max(1 − yi(w · xi), 0). The objective function minimized by the SVM
algorithm has precisely the form of this upper bound: the first term corresponds to
the slack penalty over the training set and the second to the minimization of the
‖w‖ which is equivalent to that of ‖w‖2. Note that an alternative objective function
would be based on the empirical margin loss instead of the hinge loss. However, the
advantage of the hinge loss is that it is convex, while the margin loss is not.

As already pointed out, the bounds just discussed do not directly depend on the
dimension of the feature space and guarantee good generalization with a favorable
margin. Thus, they suggest seeking large-margin separating hyperplanes in a very
high-dimensional space. In view of the form of the dual optimization problems for
SVMs, determining the solution of the optimization and using it for prediction both
require computing many inner products in that space. For very high-dimensional
spaces, the computation of these inner products could become very costly. The
next chapter provides a solution to this problem which further generalizes SVMs to
non-linear separation.

4.5 Chapter notes

The maximum-margin or optimal hyperplane solution described in section 4.2
was introduced by Vapnik and Chervonenkis [1964]. The algorithm had limited
applications, since in most tasks in practice the data is not linearly separable.
In contrast, the SVM algorithm of section 4.3 for the general non-separable case,
introduced by Cortes and Vapnik [1995] under the name support-vector networks,
has been widely adopted and been shown to be effective in practice. The algorithm
and its theory have had a profound impact on theoretical and applied machine
learning and inspired research on a variety of topics. Several specialized algorithms
have been suggested for solving the specific QP that arises when solving the SVM
problem, for example the SMO algorithm of Platt [1999] (see exercise 4.4) and a
variety of other decomposition methods such as those used in the LibLinear software
library [Hsieh et al., 2008], and [Allauzen et al., 2010] for solving the problem when
using rational kernels (see chapter 5).

Much of the theory supporting the SVM algorithm ([Cortes and Vapnik, 1995,
Vapnik, 1998]), in particular the margin theory presented in section 4.4, has been
adopted in the learning theory and statistics communities and applied to a variety
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of other problems. The margin bound on the VC-dimension of canonical hyper-
planes (theorem 4.2) is by Vapnik [1998], the proof is very similar to Novikoff’s
margin bound on the number of updates made by the Perceptron algorithm in the
separable case. Our presentation of margin guarantees based on the Rademacher
complexity follows the elegant analysis of Koltchinskii and Panchenko [2002] (see
also Bartlett and Mendelson [2002], Shawe-Taylor et al. [1998]). Our proof of Ta-
lagrand’s lemma 4.2 is a simpler and more concise version of a more general result
given by Ledoux and Talagrand [1991, pp. 112–114]. See Höffgen et al. [1995] for
hardness results related to the problem of finding a hyperplane with the minimal
number of errors on a training sample.

4.6 Exercises

4.1 Soft margin hyperplanes. The function of the slack variables used in the opti-
mization problem for soft margin hyperplanes has the form: ξ �→ ∑m

i=1 ξi. Instead,
we could use ξ �→∑m

i=1 ξp
i , with p > 1.

(a) Give the dual formulation of the problem in this general case.

(b) How does this more general formulation (p > 1) compare to the standard
setting (p = 1)? In the case p = 2 is the optimization still convex?

Sparse SVM. One can give two types of arguments in favor of the SVM algorithm:
one based on the sparsity of the support vectors, another based on the notion
of margin. Suppose that instead of maximizing the margin, we choose instead to
maximize sparsity by minimizing the Lp norm of the vector α that defines the
weight vector w, for some p ≥ 1. First, consider the case p = 2. This gives the
following optimization problem:

min
α,b

1
2

m∑
i=1

α2
i + C

m∑
i=1

ξi (4.48)

subject to yi

( m∑
j=1

αjyjxi · xj + b
)

≥ 1 − ξi, i ∈ [1,m]

ξi, αi ≥ 0, i ∈ [1,m].

(a) Show that modulo the non-negativity constraint on α, the problem coin-
cides with an instance of the primal optimization problem of SVM.

(b) Derive the dual optimization of problem of (4.48).

(c) Setting p = 1 will induce a more sparse α. Derive the dual optimization in
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this case.

4.2 Tighter Rademacher Bound. Derive the following tighter version of the bound
of theorem 4.5: for any δ > 0, with probability at least 1 − δ, for all h ∈ H and
ρ ∈ (0, 1) the following holds:

R(h) ≤ R̂ρ(h) +
2γ

ρ
Rm(H) +

√
log logγ

γ
ρ

m
+

√
log 2

δ

2m
(4.49)

for any γ > 1.

4.3 Importance weighted SVM. Suppose you wish to use SVMs to solve a learning
problem where some training data points are more important than others. More
formally, assume that each training point consists of a triplet (xi, yi, pi), where
0 ≤ pi ≤ 1 is the importance of the ith point. Rewrite the primal SVM constrained
optimization problem so that the penalty for mis-labeling a point xi is scaled by the
priority pi. Then carry this modification through the derivation of the dual solution.

4.4 Sequential minimal optimization (SMO). The SMO algorithm is an optimiza-
tion algorithm introduced to speed up the training of SVMs. SMO reduces a (po-
tentially) large quadratic programming (QP) optimization problem into a series of
small optimizations involving only two Lagrange multipliers. SMO reduces memory
requirements, bypasses the need for numerical QP optimization and is easy to im-
plement. In this question, we will derive the update rule for the SMO algorithm in
the context of the dual formulation of the SVM problem.

(a) Assume that we want to optimize equation 4.32 only over α1 and α2. Show
that the optimization problem reduces to

max
α1,α2

α1 + α2 − 1
2
K11α

2
1 − 1

2
K22α

2
2 − sK12α1α2 − y1α1v1 − y2α2v2︸ ︷︷ ︸

Ψ1(α1,α2)

subject to: 0 ≤ α1, α2 ≤ C ∧ α1 + sα2 = γ ,

where γ = y1

∑m
i=3 yiαi, s = y1y2 ∈ {−1, +1}, Kij = (xi · xj) and vi =∑m

j=3 αjyjKij for i = 1, 2.

(b) Substitute the linear constraint α1 = γ − sα2 into Ψ1 to obtain a new
objective function Ψ2 that depends only on α2. Show that the α2 that minimizes
Ψ2 (without the constraints 0 ≤ α1, α2 ≤ C) can be expressed as

α2 =
s(K11 − K12)γ + y2(v1 − v2) − s + 1

η
,
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where η = K11 + K22 − 2K12.

(c) Show that

v1 − v2 = f(x1) − f(x2) + α∗
2y2η − sy2γ(K11 − K12)

where f(x) =
∑m

i=1 α∗
i yi(xi · x) + b∗ and α∗

i are values for the Lagrange
multipliers prior to optimization over α1 and α2 (similarly, b∗ is the previous
value for the offset).

(d) Show that

α2 = α∗
2 + y2

(y2 − f(x2)) − (y1 − f(x1))
η

.

(e) For s = +1, define L = max{0, γ − C} and H = min{C, γ} as the lower
and upper bounds on α2. Similarly, for s = −1, define L = max{0,−γ} and
H = min{C,C − γ}. The update rule for SMO involves “clipping” the value of
α2, i.e.,

αclip
2 =

⎧⎪⎪⎨⎪⎪⎩
α2 if L < α2 < H

L if α2 ≤ L

H if α2 ≥ H

.

We subsequently solve for α1 such that we satisfy the equality constraint,
resulting in α1 = α∗

1 + s(α∗
2 − αclip

2 ). Why is “clipping” is required? How are L

and H derived for the case s = +1?

4.5 SVMs hands-on.

(a) Download and install the libsvm software library from:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

(b) Download the satimage data set found at:

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

Merge the training and validation sets into one. We will refer to the resulting set
as the training set from now on. Normalize both the training and test vectors.

(c) Consider the binary classification that consists of distinguishing class 6
from the rest of the data points. Use SVMs combined with polynomial kernels
(see chapter 5) to solve this classification problem. To do so, randomly split the
training data into ten equal-sized disjoint sets. For each value of the polynomial
degree, d = 1, 2, 3, 4, plot the average cross-validation error plus or minus one
standard deviation as a function of C (let the other parameters of polynomial
kernels in libsvm, γ and c, be equal to their default values 1). Report the best
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value of the trade-off constant C measured on the validation set.

(d) Let (C∗, d∗) be the best pair found previously. Fix C to be C∗. Plot the
ten-fold cross-validation training and test errors for the hypotheses obtained
as a function of d. Plot the average number of support vectors obtained as a
function of d.

(e) How many of the support vectors lie on the margin hyperplanes?

(f) In the standard two-group classification, errors on positive or negative
points are treated in the same manner. Suppose, however, that we wish to
penalize an error on a negative point (false positive error) k > 0 times more than
an error on a positive point. Give the dual optimization problem corresponding
to SVMs modified in this way.

(g) Assume that k is an integer. Show how you can use libsvm without writing
any additional code to find the solution of the modified SVMs just described.

(h) Apply the modified SVMs to the classification task previously examined
and compare with your previous SVMs results for k = 2, 4, 8, 16.





5 Kernel Methods

Kernel methods are widely used in machine learning. They are flexible techniques
that can be used to extend algorithms such as SVMs to define non-linear decision
boundaries. Other algorithms that only depend on inner products between sample
points can be extended similarly, many of which will be studied in future chapters.

The main idea behind these methods is based on so-called kernels or kernel func-
tions, which, under some technical conditions of symmetry and positive-definiteness,
implicitly define an inner product in a high-dimensional space. Replacing the orig-
inal inner product in the input space with positive definite kernels immediately
extends algorithms such as SVMs to a linear separation in that high-dimensional
space, or, equivalently, to a non-linear separation in the input space.

In this chapter, we present the main definitions and key properties of positive
definite symmetric kernels, including the proof of the fact that they define an inner
product in a Hilbert space, as well as their closure properties. We then extend the
SVM algorithm using these kernels and present several theoretical results including
general margin-based learning guarantees for hypothesis sets based on kernels. We
also introduce negative definite symmetric kernels and point out their relevance to
the construction of positive definite kernels, in particular from distances or metrics.
Finally, we illustrate the design of kernels for non-vectorial discrete structures by
introducing a general family of kernels for sequences, rational kernels. We describe
an efficient algorithm for the computation of these kernels and illustrate them with
several examples.

5.1 Introduction

In the previous chapter, we presented an algorithm for linear classification, SVMs,
which is both effective in applications and benefits from a strong theoretical justi-
fication. In practice, linear separation is often not possible. Figure 5.1a shows an
example where any hyperplane crosses both populations. However, one can use more
complex functions to separate the two sets as in figure 5.1b. One way to define such
a non-linear decision boundary is to use a non-linear mapping Φ from the input
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(a) (b)

Figure 5.1 Non-linearly separable case. The classification task consists of discrim-
inating between solid squares and solid circles. (a) No hyperplane can separate the
two populations. (b) A non-linear mapping can be used instead.

space X to a higher-dimensional space H, where linear separation is possible.
The dimension of H can truly be very large in practice. For example, in the

case of document classification, one may wish to use as features sequences of three
consecutive words, i.e., trigrams. Thus, with a vocabulary of just 100,000 words,
the dimension of the feature space H reaches 1015. On the positive side, the margin
bounds presented in section 4.4 show that, remarkably, the generalization ability of
large-margin classification algorithms such as SVMs do not depend on the dimension
of the feature space, but only on the margin ρ and the number of training examples
m. Thus, with a favorable margin ρ, such algorithms could succeed even in very high-
dimensional space. However, determining the hyperplane solution requires multiple
inner product computations in high-dimensional spaces, which can become be very
costly.

A solution to this problem is to use kernel methods, which are based on kernels
or kernel functions.

Definition 5.1 Kernels
A function K : X × X → R is called a kernel over X .

The idea is to define a kernel K such that for any two points x, x′ ∈ X , K(x, x′) be
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equal to an inner product of vectors Φ(x) and Φ(y):1

∀x, x′ ∈ X , K(x, x′) = 〈Φ(x), Φ(x′)〉 , (5.1)

for some mapping Φ: X → H to a Hilbert space H called a feature space. Since an
inner product is a measure of the similarity of two vectors, K is often interpreted
as a similarity measure between elements of the input space X .

An important advantage of such a kernel K is efficiency: K is often significantly
more efficient to compute than Φ and an inner product in H. We will see several
common examples where the computation of K(x, x′) can be achieved in O(N)
while that of 〈Φ(x), Φ(x′)〉 typically requires O(dim(H)) work, with dim(H) " N .
Furthermore, in some cases, the dimension of H is infinite.

Perhaps an even more crucial benefit of such a kernel function K is flexibility:
there is no need to explicitly define or compute a mapping Φ. The kernel K can
be arbitrarily chosen so long as the existence of Φ is guaranteed, i.e. K satisfies
Mercer’s condition (see theorem 5.1).

Theorem 5.1 Mercer’s condition
Let X ⊂ R

N be a compact set and let K : X ×X → R be a continuous and symmetric
function. Then, K admits a uniformly convergent expansion of the form

K(x, x′) =
∞∑

n=0

anφn(x)φn(x′),

with an > 0 iff for any square integrable function c (c ∈ L2(X )), the following
condition holds: ∫ ∫

X×X
c(x)c(x′)K(x, x′)dxdx′ ≥ 0.

This condition is important to guarantee the convexity of the optimization problem
for algorithms such as SVMs and thus convergence guarantees. A condition that
is equivalent to Mercer’s condition under the assumptions of the theorem is that
the kernel K be positive definite symmetric (PDS). This property is in fact more
general since in particular it does not require any assumption about X . In the next
section, we give the definition of this property and present several commonly used
examples of PDS kernels, then show that PDS kernels induce an inner product in
a Hilbert space, and prove several general closure properties for PDS kernels.

1. To differentiate that inner product from the one of the input space, we will typically
denote it by 〈·, ·〉.
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5.2 Positive definite symmetric kernels

5.2.1 Definitions

Definition 5.2 Positive definite symmetric kernels
A kernel K : X × X → R is said to be positive definite symmetric (PDS) if for
any {x1, . . . , xm} ⊆ X , the matrix K = [K(xi, xj)]ij ∈ R

m×m is symmetric positive
semidefinite (SPSD).

K is SPSD if it is symmetric and one of the following two equivalent conditions
holds:

the eigenvalues of K are non-negative;

for any column vector c = (c1, . . . , cm)� ∈ R
m×1,

c�Kc =
n∑

i,j=1

cicjK(xi, xj) ≥ 0. (5.2)

For a sample S = (x1, . . . , xm), K = [K(xi, xj)]ij ∈ R
m×m is called the kernel

matrix or the Gram matrix associated to K and the sample S.
Let us insist on the terminology: the kernel matrix associated to a positive definite

kernel is positive semidefinite . This is the correct mathematical terminology.
Nevertheless, the reader should be aware that in the context of machine learning,
some authors have chosen to use instead the term positive definite kernel to imply
a positive definite kernel matrix or used new terms such as positive semidefinite
kernel .

The following are some standard examples of PDS kernels commonly used in
applications.

Example 5.1 Polynomial kernels

For any constant c > 0, a polynomial kernel of degree d ∈ N is the kernel K defined
over R

N by:

∀x,x′ ∈ R
N , K(x,x′) = (x · x′ + c)d. (5.3)

Polynomial kernels map the input space to a higher-dimensional space of dimension(
N+d

d

)
(see exercise 5.9). As an example, for an input space of dimension N = 2,

a second-degree polynomial (d = 2) corresponds to the following inner product in
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Figure 5.2 Illustration of the XOR classification problem and the use of poly-
nomial kernels. (a) XOR problem linearly non-separable in the input space. (b)
Linearly separable using second-degree polynomial kernel.

dimension 6:

∀x,x′ ∈ R
2, K(x,x′) = (x1x

′
1 + x2x

′
2 + c)2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2
1

x2
2√

2 x1x2√
2c x1√
2c x2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x′2
1

x′2
2√

2 x′
1x

′
2√

2c x′
1√

2c x′
2

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.4)

Thus, the features corresponding to a second-degree polynomial are the original
features (x1 and x2), as well as products of these features, and the constant feature.
More generally, the features associated to a polynomial kernel of degree d are all
the monomials of degree at most d based on the original features. The explicit
expression of polynomial kernels as inner products, as in (5.4), proves directly that
they are PDS kernels.

To illustrate the application of polynomial kernels, consider the example of fig-
ure 5.2a which shows a simple data set in dimension two that is not linearly sepa-
rable. This is known as the XOR problem due to its interpretation in terms of the
exclusive OR (XOR) function: the label of a point is blue iff exactly one of its coor-
dinates is 1. However, if we map these points to the six-dimensional space defined
by a second-degree polynomial as described in (5.4), then the problem becomes
separable by the hyperplane of equation x1x2 = 0. Figure 5.2b illustrates that by
showing the projection of these points on the two-dimensional space defined by their
third and fourth coordinates.

Example 5.2 Gaussian kernels
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For any constant σ > 0, a Gaussian kernel or radial basis function (RBF) is the
kernel K defined over R

N by:

∀x,x′ ∈ R
N , K(x,x′) = exp

(
−‖x′ − x‖2

2σ2

)
. (5.5)

Gaussians kernels are among the most frequently used kernels in applications. We
will prove in section 5.2.3 that they are PDS kernels and that they can be derived
by normalization from the kernels K ′ : (x,x′) �→ exp

(
x·x′
σ2

)
. Using the power series

expansion of the function exponential, we can rewrite the expression of K ′ as follows:

∀x,x′ ∈ R
N , K ′(x,x′) =

+∞∑
n=0

(x · x′)n

σn n!
,

which shows that the kernels K ′, and thus Gaussian kernels, are positive linear
combinations of polynomial kernels of all degrees n ≥ 0.

Example 5.3 Sigmoid kernels

For any real constants a, b ≥ 0, a sigmoid kernel is the kernel K defined over R
N

by:

∀x,x′ ∈ R
N , K(x,x′) = tanh

(
a(x · x′) + b

)
. (5.6)

Using sigmoid kernels with SVMs leads to an algorithm that is closely related to
learning algorithms based on simple neural networks, which are also often defined
via a sigmoid function. When a < 0 or b < 0, the kernel is not PDS and the
corresponding neural network does not benefit from the convergence guarantees of
convex optimization (see exercise 5.15).

5.2.2 Reproducing kernel Hilbert space

Here, we prove the crucial property of PDS kernels, which is to induce an inner
product in a Hilbert space. The proof will make use of the following lemma.

Lemma 5.1 Cauchy-Schwarz inequality for PDS kernels
Let K be a PDS kernel. Then, for any x, x′ ∈ X ,

K(x, x′)2 ≤ K(x, x)K(x′, x′). (5.7)

Proof Consider the matrix K =
(

K(x,x) K(x,x′)
K(x′,x) K(x′,x′)

)
. By definition, if K is PDS,

then K is SPSD for all x, x′ ∈ X . In particular, the product of the eigenvalues of
K, det(K), must be non-negative, thus, using K(x′, x) = K(x, x′), we have

det(K) = K(x, x)K(x′, x′) − K(x, x′)2 ≥ 0,
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which concludes the proof.

The following is the main result of this section.

Theorem 5.2 Reproducing kernel Hilbert space (RKHS)
Let K : X × X → R be a PDS kernel. Then, there exists a Hilbert space H and a
mapping Φ from X to H such that:

∀x, x′ ∈ X , K(x, x′) = 〈Φ(x), Φ(x′)〉 . (5.8)

Furthermore, H has the following property known as the reproducing property:

∀h ∈ H,∀x ∈ X , h(x) = 〈h, K(x, ·)〉 . (5.9)

H is called a reproducing kernel Hilbert space (RKHS) associated to K.

Proof For any x ∈ X , define Φ(x) : X → R as follows:

∀x′ ∈ X , Φ(x)(x′) = K(x, x′).

We define H0 as the set of finite linear combinations of such functions Φ(x):

H0 =
{∑

i∈I

aiΦ(xi) : ai ∈ R, xi ∈ X , card(I) < ∞
}

.

Now, we introduce an operation 〈·, ·〉 on H0 × H0 defined for all f, g ∈ H0 with
f =

∑
i∈I aiΦ(xi) and g =

∑
j∈J bjΦ(xj) by

〈f, g〉 =
∑

i∈I,j∈J

aibjK(xi, x
′
j) =

∑
j∈J

bjf(x′
j) =

∑
i∈I

aig(xi).

By definition, 〈·, ·〉 is symmetric. The last two equations show that 〈f, g〉 does not
depend on the particular representations of f and g, and also show that 〈·, ·〉 is
bilinear. Further, for any f =

∑
i∈I aiΦ(xi) ∈ H0, since K is PDS, we have

〈f, f〉 =
∑
i,j∈I

aiajK(xi, xj) ≥ 0.

Thus, 〈·, ·〉 is positive semidefinite bilinear form. This inequality implies more
generally using the bilinearity of 〈·, ·〉 that for any f1, . . . , fm and c1, . . . , cm ∈ R,

m∑
i,j=1

cicj〈fi, fj〉 =
〈 m∑

i=1

cifi,

m∑
j=1

cjfj

〉
≥ 0.

Hence, 〈·, ·〉 is a PDS kernel on H0. Thus, for any f ∈ H0 and any x ∈ X , by
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lemma 5.1, we can write

〈f,Φ(x)〉2 ≤ 〈f, f〉〈Φ(x), Φ(x)〉.

Further, we observe the reproducing property of 〈·, ·〉: for any f =
∑

i∈I aiΦ(xi) ∈
H0, by definition of 〈·, ·〉,

∀x ∈ X , f(x) =
∑
i∈I

aiK(xi, x) = 〈f,Φ(x)〉 . (5.10)

Thus, [f(x)]2 ≤ 〈f, f〉K(x, x) for all x ∈ X , which shows the definiteness of 〈·, ·〉.
This implies that 〈·, ·〉 defines an inner product on H0, which thereby becomes a
pre-Hilbert space. H0 can be completed to form a Hilbert space H in which it is
dense, following a standard construction. By the Cauchy-Schwarz inequality , for
any x ∈ X , f �→ 〈f,Φ(x)〉 is Lipschitz, therefore continuous. Thus, since H0 is dense
in H, the reproducing property (5.10) also holds over H.

The Hilbert space H defined in the proof of the theorem for a PDS kernel K is called
the reproducing kernel Hilbert space (RKHS) associated to K. Any Hilbert space H

such that there exists Φ: X → H with K(x, x′) = 〈Φ(x), Φ(x′)〉 for all x, x′ ∈ X
is called a feature space associated to K and Φ is called a feature mapping . We
will denote by ‖ · ‖H the norm induced by the inner product in feature space H:
‖w‖H =

√〈w,w〉 for all w ∈ H. Note that the feature spaces associated to K are in
general not unique and may have different dimensions. In practice, when referring to
the dimension of the feature space associated to K, we either refer to the dimension
of the feature space based on a feature mapping described explicitly, or to that of
the RKHS associated to K.

Theorem 5.2 implies that PDS kernels can be used to implicitly define a feature
space or feature vectors. As already underlined in previous chapters, the role played
by the features in the success of learning algorithms is crucial: with poor features,
uncorrelated with the target labels, learning could become very challenging or
even impossible; in contrast, good features could provide invaluable clues to the
algorithm. Therefore, in the context of learning with PDS kernels and for a fixed
input space, the problem of seeking useful features is replaced by that of finding
useful PDS kernels. While features represented the user’s prior knowledge about the
task in the standard learning problems, here PDS kernels will play this role. Thus,
in practice, an appropriate choice of PDS kernel for a task will be crucial.

5.2.3 Properties

This section highlights several important properties of PDS kernels. We first show
that PDS kernels can be normalized and that the resulting normalized kernels are
also PDS. We also introduce the definition of empirical kernel maps and describe
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their properties and extension. We then prove several important closure properties
of PDS kernels, which can be used to construct complex PDS kernels from simpler
ones.

To any kernel K, we can associate a normalized kernel K ′ defined by

∀x, x′ ∈ X , K ′(x, x′) =

⎧⎨⎩0 if (K(x, x) = 0) ∧ (K(x′, x′) = 0)
K(x,x′)√

K(x,x)K(x′,x′)
otherwise.

(5.11)
By definition, for a normalized kernel K ′, K ′(x, x) = 1 for all x ∈ X such that
K(x, x) �= 0. An example of normalized kernel is the Gaussian kernel with parameter
σ > 0, which is the normalized kernel associated to K ′ : (x,x′) �→ exp

(
x·x′
σ2

)
:

∀x,x′ ∈ R
N ,

K ′(x,x′)√
K ′(x,x)K ′(x′,x′)

=
e

x·x′
σ2

e
‖x‖2

2σ2 e
‖x′‖2

2σ2

= exp
(
−‖x′ − x′‖2

2σ2

)
. (5.12)

Lemma 5.2 Normalized PDS kernels
Let K be a PDS kernel. Then, the normalized kernel K ′ associated to K is PDS.

Proof Let {x1, . . . , xm} ⊆ X and let c be an arbitrary vector in R
m. We will show

that the sum
∑m

i,j=1 cicjK
′(xi, xj) is non-negative. By lemma 5.1, if K(xi, xi) = 0

then K(xi, xj) = 0 and thus K ′(xi, xj) = 0 for all j ∈ [1,m]. Thus, we can assume
that K(xi, xi) > 0 for all i ∈ [1,m]. Then, the sum can be rewritten as follows:

m∑
i,j=1

cicjK(xi, xj)√
K(xi, xi)K(xj , xj)

=
m∑

i,j=1

cicj 〈Φ(xi), Φ(xj)〉
‖Φ(xi)‖H ‖Φ(xj)‖H

=

∥∥∥∥∥
m∑

i=1

ciΦ(xi)
‖Φ(xi)‖H

∥∥∥∥∥
2

H

≥ 0,

where Φ is a feature mapping associated to K, which exists by theorem 5.2.

As indicated earlier, PDS kernels can be interpreted as a similarity measure since
they induce an inner product in some Hilbert space H. This is more evident for a
normalized kernel K since K(x, x′) is then exactly the cosine of the angle between
the feature vectors Φ(x) and Φ(x′), provided that none of them is zero: Φ(x) and
Φ(x′) are then unit vectors since ‖Φ(x)‖H = ‖Φ(x′)‖H =

√
K(x, x) = 1.

While one of the advantages of PDS kernels is an implicit definition of a feature
mapping, in some instances, it may be desirable to define an explicit feature
mapping based on a PDS kernel. This may be to work in the primal for various
optimization and computational reasons, to derive an approximation based on an
explicit mapping, or as part of a theoretical analysis where an explicit mapping
is more convenient. The empirical kernel map Φ associated to a PDS kernel K is
a feature mapping that can be used precisely in such contexts. Given a training
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sample containing points x1, . . . , xm ∈ X , Φ: X → R
m is defined for all x ∈ X by

Φ(x) =

⎡⎢⎢⎣
K(x, x1)

...

K(x, xm)

⎤⎥⎥⎦ .

Thus, Φ(x) is the vector of the K-similarity measures of x with each of the training
points. Let K be the kernel matrix associated to K and ei the ith unit vector.
Note that for any i ∈ [1,m], Φ(xi) is the ith column of K, that is Φ(xi) = Kei. In
particular, for all i, j ∈ [1,m],

〈Φ(xi), Φ(xj)〉 = (Kei)�(Kej) = e�i K2ej .

Thus, the kernel matrix K′ associated to Φ is K2. It may desirable in some cases
to define a feature mapping whose kernel matrix coincides with K. Let K† 1

2 denote
the SPSD matrix whose square is K†, the pseudo-inverse of K. K† 1

2 can be derived
from K† via singular value decomposition and if the matrix K is invertible, K† 1

2

coincides with K−1/2 (see appendix A for properties of the pseudo-inverse). Then,
Ψ can be defined as follows using the empirical kernel map Φ:

∀x ∈ X , Ψ(x) = K† 1
2 Φ(x).

Using the identity KK†K = K valid for any symmetric matrix K, for all i, j ∈ [1,m],
the following holds:

〈Ψ(xi), Ψ(xj)〉 = (K† 1
2 Kei)�(K† 1

2 Kej) = e�i KK†Kej = e�i Kej .

Thus, the kernel matrix associated to Ψ is K. Finally, note that for the feature
mapping Ω: X → R

m defined by

∀x ∈ X , Ω(x) = K†Φ(x),

for all i, j ∈ [1,m], we have 〈Ω(xi), Ω(xj)〉 = e�i KK†K†Kej = e�i KK†ej , using the
identity K†K†K = K† valid for any symmetric matrix K. Thus, the kernel matrix
associated to Ω is KK†, which reduces to the identity matrix I ∈ R

m×m when K is
invertible, since K† = K−1 in that case.

As pointed out in the previous section, kernels represent the user’s prior knowl-
edge about a task. In some cases, a user may come up with appropriate similarity
measures or PDS kernels for some subtasks — for example, for different subcat-
egories of proteins or text documents to classify. But how can he combine these
PDS kernels to form a PDS kernel for the entire class? Is the resulting combined
kernel guaranteed to be PDS? In the following, we will show that PDS kernels are
closed under several useful operations which can be used to design complex PDS
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kernels. These operations are the sum and the product of kernels, as well as the
tensor product of two kernels K and K ′, denoted by K ⊗ K ′ and defined by

∀x1, x2, x
′
1, x

′
2 ∈ X , (K ⊗ K ′)(x1, x

′
1, x2, x

′
2) = K(x1, x2)K ′(x′

1, x
′
2).

They also include the pointwise limit: given a sequence of kernels (Kn)n∈N such that
for all x, x′ ∈ X (Kn(x, x′))n∈N admits a limit, the pointwise limit of (Kn)n∈N is
the kernel K defined for all x, x′ ∈ X by K(x, x′) = limn→+∞(Kn)(x, x′). Similarly,
if
∑∞

n=0 anxn is a power series with radius of convergence ρ > 0 and K a kernel
taking values in (−ρ, +ρ), then

∑∞
n=0 anKn is the kernel obtained by composition

of K with that power series. The following theorem provides closure guarantees for
all of these operations.

Theorem 5.3 PDS kernels — closure properties
PDS kernels are closed under sum, product, tensor product, pointwise limit, and
composition with a power series

∑∞
n=0 anxn with an ≥ 0 for all n ∈ N.

Proof We start with two kernel matrices, K and K′, generated from PDS kernels
K and K ′ for an arbitrary set of m points. By assumption, these kernel matrices
are SPSD. Observe that for any c ∈ R

m×1,

(c�Kc ≥ 0) ∧ (c�K′c ≥ 0) ⇒ c�(K + K′)c ≥ 0.

By (5.2), this shows that K + K′ is SPSD and thus that K + K ′ is PDS. To show
closure under product, we will use the fact that for any SPSD matrix K there exists
M such that K = MM�. The existence of M is guaranteed as it can be generated
via, for instance, singular value decomposition of K, or by Cholesky decomposition.
The kernel matrix associated to KK ′ is (KijK′

ij)ij . For any c ∈ R
m×1, expressing

Kij in terms of the entries of M, we can write

m∑
i,j=1

cicj(KijK′
ij) =

m∑
i,j=1

cicj

([ m∑
k=1

MikMjk

]
K′

ij

)

=
m∑

k=1

[ m∑
i,j=1

cicjMikMjkK′
ij

]

=
m∑

k=1

z�k K′zk ≥ 0,

with zk =
[

c1M1k...
cmMmk

]
. This shows that PDS kernels are closed under product.

The tensor product of K and K ′ is PDS as the product of the two PDS kernels
(x1, x

′
1, x2, x

′
2) �→ K(x1, x2) and (x1, x

′
1, x2, x

′
2) �→ K ′(y1, y2). Next, let (Kn)n∈N

be a sequence of PDS kernels with pointwise limit K. Let K be the kernel matrix
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associated to K and Kn the one associated to Kn for any n ∈ N. Observe that

(∀n, c�Knc ≥ 0) ⇒ lim
n→∞ c�Knc = c�Kc ≥ 0.

This shows the closure under pointwise limit. Finally, assume that K is a PDS
kernel with |K(x, x′)| < ρ for all x, x′ ∈ X and let f : x �→ ∑∞

n=0 anxn, an ≥ 0 be a
power series with radius of convergence ρ. Then, for any n ∈ N, Kn and thus anKn

are PDS by closure under product. For any N ∈ N,
∑N

n=0 anKn is PDS by closure
under sum of anKns and f ◦ K is PDS by closure under the limit of

∑N
n=0 anKn

as N tends to infinity.

The theorem implies in particular that for any PDS kernel matrix K, exp(K) is
PDS, since the radius of convergence of exp is infinite. In particular, the kernel
K ′ : (x,x′) �→ exp

(
x·x′
σ2

)
is PDS since (x,x′) �→ x·x′

σ2 is PDS. Thus, by lemma 5.2,
this shows that a Gaussian kernel, which is the normalized kernel associated to K ′,
is PDS.

5.3 Kernel-based algorithms

In this section we discuss how SVMs can be used with kernels and analyze the
impact that kernels have on generalization.

5.3.1 SVMs with PDS kernels

In chapter 4, we noted that the dual optimization problem for SVMs as well as the
form of the solution did not directly depend on the input vectors but only on inner
products. Since a PDS kernel implicitly defines an inner product (theorem 5.2), we
can extend SVMs and combine it with an arbitrary PDS kernel K by replacing each
instance of an inner product x ·x′ with K(x, x′). This leads to the following general
form of the SVM optimization problem and solution with PDS kernels extending
(4.32):

max
α

m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjK(xi, xj) (5.13)

subject to: 0 ≤ αi ≤ C ∧
m∑

i=1

αiyi = 0, i ∈ [1,m].

In view of (4.33), the hypothesis h solution can be written as:

h(x) = sgn
( m∑

i=1

αiyiK(xi, x) + b
)
, (5.14)
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with b = yi − ∑m
j=1 αjyjK(xj , xi) for any xi with 0 < αi < C. We can rewrite

the optimization problem (5.13) in a vector form, by using the kernel matrix K
associated to K for the training sample (x1, . . . , xm) as follows:

max
α

2 1�α − (α ◦ y)�K(α ◦ y) (5.15)

subject to: 0 ≤ α ≤ C ∧ α�y = 0.

In this formulation, α ◦ y is the Hadamard product or entry-wise product of the
vectors α and y. Thus, it is the column vector in R

m×1 whose ith component
equals αiyi. The solution in vector form is the same as in (5.14), but with b =
yi − (α ◦ y)�Kei for any xi with 0 < αi < C.

This version of SVMs used with PDS kernels is the general form of SVMs we
will consider in all that follows. The extension is important, since it enables an
implicit non-linear mapping of the input points to a high-dimensional space where
large-margin separation is sought.

Many other algorithms in areas including regression, ranking, dimensionality
reduction or clustering can be extended using PDS kernels following the same
scheme (see in particular chapters 8, 9, 10, 12).

5.3.2 Representer theorem

Observe that modulo the offset b, the hypothesis solution of SVMs can be written
as a linear combination of the functions K(xi, ·), where xi is a sample point. The
following theorem known as the representer theorem shows that this is in fact a
general property that holds for a broad class of optimization problems, including
that of SVMs with no offset.

Theorem 5.4 Representer theorem
Let K : X ×X → R be a PDS kernel and H its corresponding RKHS. Then, for any
non-decreasing function G : R → R and any loss function L : R

m → R ∪ {+∞}, the
optimization problem

argmin
h∈H

F (h) = argmin
h∈H

G(‖h‖H) + L
(
h(x1), . . . , h(xm)

)
admits a solution of the form h∗ =

∑m
i=1 αiK(xi, ·). If G is further assumed to be

increasing, then any solution has this form.

Proof Let H1 = span({K(xi, ·) : i ∈ [1,m]}). Any h ∈ H admits the decomposition
h = h1 + h⊥ according to H = H1 ⊕ H

⊥
1 , where ⊕ is the direct sum. Since G is

non-decreasing, G(‖h1‖H) ≤ G(
√‖h1‖2

H
+ ‖h⊥‖2

H
) = G(‖h‖H). By the reproducing

property, for all i ∈ [1,m], h(xi) = 〈h, K(xi, ·)〉 = 〈h1,K(xi, ·)〉 = h1(xi). Thus,
L
(
h(x1), . . . , h(xm)

)
= L

(
h1(x1), . . . , h1(xm)

)
and F (h1) ≤ F (h). This proves the
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first part of the theorem. If G is further increasing, then F (h1) < F (h) when
‖h⊥‖H > 0 and any solution of the optimization problem must be in H1.

5.3.3 Learning guarantees

Here, we present general learning guarantees for hypothesis sets based on PDS
kernels, which hold in particular for SVMs combined with PDS kernels.

The following theorem gives a general bound on the empirical Rademacher
complexity of kernel-based hypotheses with bounded norm, that is a hypothesis
set of the form H = {h ∈ H : ‖h‖H ≤ Λ}, for some Λ ≥ 0, where H is the
RKHS associated to a kernel K. By the reproducing property, any h ∈ H is of
the form x �→ 〈h, K(x, ·)〉 = 〈h, Φ(x)〉 with ‖h‖H ≤ Λ, where Φ is a feature mapping
associated to K, that is of the form x �→ 〈w, Φ(x)〉 with ‖w‖H ≤ Λ.

Theorem 5.5 Rademacher complexity of kernel-based hypotheses
Let K : X × X → R be a PDS kernel and let Φ: X → H be a feature mapping
associated to K. Let S ⊆ {x : K(x, x) ≤ r2} be a sample of size m, and let
H = {x �→ w · Φ(x) : ‖w‖H ≤ Λ} for some Λ ≥ 0. Then

R̂S(H) ≤ Λ
√

Tr[K]
m

≤
√

r2Λ2

m
. (5.16)

Proof The proof steps are as follows:

R̂S(H) =
1
m

E
σ

[
sup

‖w‖≤Λ

〈
w,

m∑
i=1

σiΦ(xi)
〉]

=
Λ
m

E
σ

[∥∥∥ m∑
i=1

σiΦ(xi)
∥∥∥

H

]
(Cauchy-Schwarz , eq. case)

≤ Λ
m

[
E
σ

[∥∥∥ m∑
i=1

σiΦ(xi)
∥∥∥2

H

]]1/2

(Jensen’s ineq.)

=
Λ
m

[
E
σ

[ m∑
i=1

‖Φ(xi)‖2
H

]]1/2

(i �= j ⇒ E
σ
[σiσj ] = 0)

=
Λ
m

[
E
σ

[ m∑
i=1

K(xi, xi)
]]1/2

=
Λ
√

Tr[K]
m

≤
√

r2Λ2

m
.

The initial equality holds by definition of the empirical Rademacher complexity
(definition 3.2). The first inequality is due to the Cauchy-Schwarz inequality and
‖w‖H ≤ Λ. The following inequality results from Jensen’s inequality (theorem B.4)
applied to the concave function

√·. The subsequent equality is a consequence of
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Eσ[σiσj ] = Eσ[σi] Eσ[σj ] = 0 for i �= j, since the Rademacher variables σi and
σj are independent. The statement of the theorem then follows by noting that
Tr[K] ≤ mr2.

The theorem indicates that the trace of the kernel matrix is an important quantity
for controlling the complexity of hypothesis sets based on kernels. Observe that
by the Khintchine-Kahane inequality (D.22), the empirical Rademacher complexity

R̂S(H) = Λ
m Eσ[‖∑m

i=1 σiΦ(xi)‖H] can also be lower bounded by 1√
2

Λ
√

Tr[K]

m , which
only differs from the upper bound found by the constant 1√

2
. Also, note that if

K(x, x) ≤ r2 for all x ∈ X , then the inequalities 5.16 hold for all samples S.
The bound of theorem 5.5 or the inequalities 5.16 can be plugged into any of the

Rademacher complexity generalization bounds presented in the previous chapters.
In particular, in combination with theorem 4.4, they lead directly to the following
margin bound similar to that of corollary 4.1.

Corollary 5.1 Margin bounds for kernel-based hypotheses
Let K : X × X → R be a PDS kernel with r = supx∈X K(x, x). Let Φ: X → H be a
feature mapping associated to K and let H = {x �→ w · Φ(x) : ‖w‖H ≤ Λ} for some
Λ ≥ 0. Fix ρ > 0. Then, for any δ > 0, each of the following statements holds with
probability at least 1 − δ for any h ∈ H:

R(h) ≤ R̂ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
(5.17)

R(h) ≤ R̂ρ(h) + 2

√
Tr[K]Λ2/ρ2

m
+ 3

√
log 2

δ

2m
. (5.18)

5.4 Negative definite symmetric kernels

Often in practice, a natural distance or metric is available for the learning task
considered. This metric could be used to define a similarity measure. As an example,
Gaussian kernels have the form exp(−d2), where d is a metric for the input vector
space. Several natural questions arise such as: what other PDS kernels can we
construct from a metric in a Hilbert space? What technical condition should d

satisfy to guarantee that exp(−d2) is PDS? A natural mathematical definition that
helps address these questions is that of negative definite symmetric (NDS) kernels.

Definition 5.3 Negative definite symmetric (NDS) kernels
A kernel K : X × X → R is said to be negative-definite symmetric (NDS) if it
is symmetric and if for all {x1, . . . , xm} ⊆ X and c ∈ R

m×1 with 1�c = 0, the
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following holds:

c�Kc ≤ 0.

Clearly, if K is PDS, then −K is NDS, but the converse does not hold in general.
The following gives a standard example of an NDS kernel.

Example 5.4 Squared distance — NDS kernel

The squared distance (x, x′) �→ ‖x′ − x‖2 in R
N defines an NDS kernel. Indeed, let

c ∈ R
m×1 with

∑m
i=1 ci = 0. Then, for any {x1, . . . , xm} ⊆ X , we can write

m∑
i,j=1

cicj ||xi − xj ||2 =
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2 − 2xi · xj)

=
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2) − 2
m∑

i=1

cixi ·
m∑

j=1

cjxj

=
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2) − 2
∥∥ m∑

i=1

cixi

∥∥2

≤
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2)

=
( m∑

j=1

cj

)( m∑
i=1

ci(‖xi‖2
)

+
( m∑

i=1

ci

)( m∑
j=1

cj‖xj‖2
)

= 0.

The next theorems show connections between NDS and PDS kernels. These
results provide another series of tools for designing PDS kernels.

Theorem 5.6

Let K ′ be defined for any x0 by

K ′(x, x′) = K(x, x0) + K(x′, x0) − K(x, x′) − K(x0, x0)

for all x, x′ ∈ X . Then K is NDS iff K ′ is PDS.

Proof Assume that K ′ is PDS and define K such that for any x0 we have
K(x, x′) = K(x, x0) + K(x0, x

′) − K(x0, x0) − K ′(x, x′). Then for any c ∈ R
m

such that c�1 = 0 and any set of points (x1, . . . , xm) ∈ Xm we have

m∑
i,j=1

cicjK(xi, xj) =
( m∑

i=1

ciK(xi, x0)
)( m∑

j=1

cj

)
+
( m∑

i=1

ci

)( m∑
j=1

cjK(x0, xj)
)

−
( m∑

i=1

ci

)2

K(x0, x0) −
m∑

i,j=1

cicjK
′(xi, xj) = −

m∑
i,j=1

cicjK
′(xi, xj) ≤ 0 .
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which proves K is NDS.
Now, assume K is NDS and define K ′ for any x0 as above. Then, for any c ∈ R

m,
we can define c0 = −c�1 and the following holds by the NDS property for any points
(x1, . . . , xm) ∈ Xm as well as x0 defined previously:

∑m
i,j=0 cicjK(xi, xj) ≤ 0. This

implies that

( m∑
i=0

ciK(xi, x0)
)( m∑

j=0

cj

)
+
( m∑

i=0

ci

)( m∑
j=0

cjK(x0, xj)
)

−
( m∑

i=0

ci

)2

K(x0, x0) −
m∑

i,j=0

cicjK
′(xi, xj) = −

m∑
i,j=0

cicjK
′(xi, xj) ≤ 0 ,

which implies 2
∑m

i,j=1 cicjK
′(xi, xj) ≥ −2c0

∑m
i=0 ciK

′(xi, x0) + c2
0K

′(x0, x0) = 0.
The equality holds since ∀x ∈ X ,K ′(x, x0) = 0.

This theorem is useful in showing other connections, such the following theorems,
which are left as exercises (see exercises 5.14 and 5.15).

Theorem 5.7

Let K : X ×X → R be a symmetric kernel. Then, K is NDS iff exp(−tK) is a PDS
kernel for all t > 0.

The theorem provides another proof that Gaussian kernels are PDS: as seen earlier
(Example 5.4), the squared distance (x, x′) �→ ‖x − x′‖2 in R

N is NDS, thus
(x, x′) �→ exp(−t||x − x′||2) is PDS for all t > 0.

Theorem 5.8

Let K : X × X → R be an NDS kernel such that for all x, x′ ∈ X ,K(x, x′) = 0 iff
x = x′. Then, there exists a Hilbert space H and a mapping Φ: X → H such that
for all x, x′ ∈ X ,

K(x, x′) = ‖Φ(x) − Φ(x′)‖2.

Thus, under the hypothesis of the theorem,
√

K defines a metric.

This theorem can be used to show that the kernel (x, x′) �→ exp(−|x − x′|p) in R

is not PDS for p > 2. Otherwise, for any t > 0, {x1, . . . , xm} ⊆ X and c ∈ R
m×1,

we would have:
m∑

i,j=1

cicje
−t|xi−xj |p =

m∑
i,j=1

cicje
−|t1/pxi−t1/pxj |p ≥ 0.

This would imply that (x, x′) �→ |x − x′|p is NDS for p > 2, which can be proven
(via theorem 5.8) not to be valid.
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5.5 Sequence kernels

The examples given in the previous sections, including the commonly used poly-
nomial or Gaussian kernels, were all for PDS kernels over vector spaces. In many
learning tasks found in practice, the input space X is not a vector space. The ex-
amples to classify in practice could be protein sequences, images, graphs, parse
trees, finite automata, or other discrete structures which may not be directly given
as vectors. PDS kernels provide a method for extending algorithms such as SVMs
originally designed for a vectorial space to the classification of such objects. But,
how can we define PDS kernels for these structures?

This section will focus on the specific case of sequence kernels, that is, kernels
for sequences or strings. PDS kernels can be defined for other discrete structures
in somewhat similar ways. Sequence kernels are particularly relevant to learning
algorithms applied to computational biology or natural language processing, which
are both important applications.

How can we define PDS kernels for sequences, which are similarity measures for
sequences? One idea consists of declaring two sequences, e.g., two documents or
two biosequences, as similar when they share common substrings or subsequences.
One example could be the kernel between two sequences defined by the sum
of the product of the counts of their common substrings. But which substrings
should be used in that definition? Most likely, we would need some flexibility in
the definition of the matching substrings. For computational biology applications,
for example, the match could be imperfect. Thus, we may need to consider some
number of mismatches, possibly gaps, or wildcards. More generally, we might need
to allow various substitutions and might wish to assign different weights to common
substrings to emphasize some matching substrings and deemphasize others.

As can be seen from this discussion, there are many different possibilities and
we need a general framework for defining such kernels. In the following, we will
introduce a general framework for sequence kernels, rational kernels, which will
include all the kernels considered in this discussion. We will also describe a general
and efficient algorithm for their computation and will illustrate them with some
examples.

The definition of these kernels relies on that of weighted transducers. Thus, we
start with the definition of these devices as well as some relevant algorithms.

5.5.1 Weighted transducers

Sequence kernels can be effectively represented and computed using weighted trans-
ducers. In the following definition, let Σ denote a finite input alphabet, Δ a finite
output alphabet, and ε the empty string or null label, whose concatenation with
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2/8 b:b/2

0

b:b/2

3/2

b:a/3

1

a:b/3

a:a/2

b:a/4

a:a/1

Figure 5.3 Example of weighted transducer.

any string leaves it unchanged.

Definition 5.4

A weighted transducer T is a 7-tuple T = (Σ, Δ, Q, I, F,E, ρ) where Σ is a finite
input alphabet, Δ a finite output alphabet, Q is a finite set of states, I ⊆ Q the
set of initial states, F ⊆ Q the set of final states, E a finite multiset of transitions
elements of Q×(Σ∪{ε})×(Δ∪{ε})×R×Q, and ρ : F → R a final weight function
mapping F to R. The size of transducer T is the sum of its number of states and
transitions and is denoted by |T |.2

Thus, weighted transducers are finite automata in which each transition is labeled
with both an input and an output label and carries some real-valued weight.
Figure 5.3 shows an example of a weighted finite-state transducer. In this figure,
the input and output labels of a transition are separated by a colon delimiter, and
the weight is indicated after the slash separator. The initial states are represented
by a bold circle and final states by double circles. The final weight ρ[q] at a final
state q is displayed after the slash.

The input label of a path π is a string element of Σ∗ obtained by concatenating
input labels along π. Similarly, the output label of a path π is obtained by
concatenating output labels along π. A path from an initial state to a final state is
an accepting path. The weight of an accepting path is obtained by multiplying the
weights of its constituent transitions and the weight of the final state of the path.

A weighted transducer defines a mapping from Σ∗ × Δ∗ to R. The weight
associated by a weighted transducer T to a pair of strings (x, y) ∈ Σ∗ × Δ∗ is
denoted by T (x, y) and is obtained by summing the weights of all accepting paths

2. A multiset in the definition of the transitions is used to allow for the presence of several
transitions from a state p to a state q with the same input and output label, and even the
same weight, which may occur as a result of various operations.
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with input label x and output label y. For example, the transducer of figure 5.3
associates to the pair (aab, baa) the weight 3 × 1 × 4 × 2 + 3 × 2 × 3 × 2, since there
is a path with input label aab and output label baa and weight 3 × 1 × 4 × 2, and
another one with weight 3 × 2 × 3 × 2.

The sum of the weights of all accepting paths of an acyclic transducer, that
is a transducer T with no cycle, can be computed in linear time, that is O(|T |),
using a general shortest-distance or forward-backward algorithm. These are simple
algorithms, but a detailed description would require too much of a digression from
the main topic of this chapter.

Composition An important operation for weighted transducers is composition,
which can be used to combine two or more weighted transducers to form more
complex weighted transducers. As we shall see, this operation is useful for the
creation and computation of sequence kernels. Its definition follows that of com-
position of relations. Given two weighted transducers T1 = (Σ, Δ, Q1, I1, F1, E1, ρ1)
and T2 = (Δ, Ω, Q2, I2, F2, E2, ρ2), the result of the composition of T1 and T2 is a
weighted transducer denoted by T1 ◦ T2 and defined for all x ∈ Σ∗ and y ∈ Ω∗ by

(T1 ◦ T2)(x, y) =
∑

z∈Δ∗
T1(x, z) · T2(z, y), (5.19)

where the sum runs over all strings z over the alphabet Δ. Thus, composition is
similar to matrix multiplication with infinite matrices.

There exists a general and efficient algorithm to compute the composition of two
weighted transducers. In the absence of εs on the input side of T1 or the output
side of T2, the states of T1 ◦ T2 = (Σ, Δ, Q, I, F,E, ρ) can be identified with pairs
made of a state of T1 and a state of T2, Q ⊆ Q1 × Q2. Initial states are those
obtained by pairing initial states of the original transducers, I = I1 × I2, and
similarly final states are defined by F = Q ∩ (F1 × F2). The final weight at a state
(q1, q2) ∈ F1 × F2 is ρ(q) = ρ1(q1)ρ2(q2), that is the product of the final weights at
q1 and q2. Transitions are obtained by matching a transition of T1 with one of T2

from appropriate transitions of T1 and T2:

E =
⊎

(q1,a,b,w1,q2)∈E1
(q′

1,b,c,w2,q′
2)∈E2

{(
(q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)
)}

.

Here, % denotes the standard join operation of multisets as in {1, 2} % {1, 3} =
{1, 1, 2, 3}, to preserve the multiplicity of the transitions.

In the worst case, all transitions of T1 leaving a state q1 match all those of T2

leaving state q′1, thus the space and time complexity of composition is quadratic:
O(|T1||T2|). In practice, such cases are rare and composition is very efficient.
Figure 5.4 illustrates the algorithm in a particular case.
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1

a:b/0.1

a:b/0.2

2

b:b/0.3 3/0.7

b:b/0.4

          a:b/0.5

a:a/0.6

0

1

b:b/0.1

b:a/0.2

2

a:b/0.3
3/0.6

a:b/0.4

b:a/0.5

(a) (b)

(0, 0) (1, 1)
a:b/.01

(0, 1)

a:a/.04

(2, 1)

b:a/.06 (3, 1)

b:a/.08

a:a/.02

a:a/0.1

(3, 2)

a:b/.18

(3, 3)a:b/.24

(c)

Figure 5.4 (a) Weighted transducer T1. (b) Weighted transducer T2. (c) Result
of composition of T1 and T2, T1 ◦ T2. Some states might be constructed during the
execution of the algorithm that are not co-accessible, that is, they do not admit a
path to a final state, e.g., (3, 2). Such states and the related transitions (in red) can
be removed by a trimming (or connection) algorithm in linear time.

As illustrated by figure 5.5, when T1 admits output ε labels or T2 input ε labels,
the algorithm just described may create redundant ε-paths, which would lead to
an incorrect result. The weight of the matching paths of the original transducers
would be counted p times, where p is the number of redundant paths in the result
of composition. To avoid with this problem, all but one ε-path must be filtered out
of the composite transducer. Figure 5.5 indicates in boldface one possible choice for
that path, which in this case is the shortest. Remarkably, that filtering mechanism
itself can be encoded as a finite-state transducer F (figure 5.5b).

To apply that filter, we need to first augment T1 and T2 with auxiliary symbols
that make the semantics of ε explicit: let T̃1 (T̃2) be the weighted transducer obtained
from T1 (respectively T2) by replacing the output (respectively input) ε labels with
ε2 (respectively ε1) as illustrated by figure 5.5. Thus, matching with the symbol ε1
corresponds to remaining at the same state of T1 and taking a transition of T2 with
input ε. ε2 can be described in a symmetric way. The filter transducer F disallows a
matching (ε2, ε2) immediately after (ε1, ε1) since this can be done instead via (ε2, ε1).
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Figure 5.5 Redundant ε-paths in composition. All transition and final weights are
equal to one. (a) A straightforward generalization of the ε-free case would generate
all the paths from (1, 1) to (3, 2) when composing T1 and T2 and produce an incorrect
results in non-idempotent semirings. (b) Filter transducer F . The shorthand x is
used to represent an element of Σ.

By symmetry, it also disallows a matching (ε1, ε1) immediately after (ε2, ε2). In the
same way, a matching (ε1, ε1) immediately followed by (ε2, ε1) is not permitted
by the filter F since a path via the matchings (ε2, ε1)(ε1, ε1) is possible. Similarly,
(ε2, ε2)(ε2, ε1) is ruled out. It is not hard to verify that the filter transducer F is
precisely a finite automaton over pairs accepting the complement of the language

L = σ∗((ε1, ε1)(ε2, ε2) + (ε2, ε2)(ε1, ε1) + (ε1, ε1)(ε2, ε1) + (ε2, ε2)(ε2, ε1))σ∗,

where σ = {(ε1, ε1), (ε2, ε2), (ε2, ε1), x}. Thus, the filter F guarantees that exactly
one ε-path is allowed in the composition of each ε sequences. To obtain the correct
result of composition, it suffices then to use the ε-free composition algorithm already
described and compute

T̃1 ◦ F ◦ T̃2. (5.20)

Indeed, the two compositions in T̃1 ◦ F ◦ T̃2 no longer involve εs. Since the size of
the filter transducer F is constant, the complexity of general composition is the
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same as that of ε-free composition, that is O(|T1||T2|). In practice, the augmented
transducers T̃1 and T̃2 are not explicitly constructed, instead the presence of the
auxiliary symbols is simulated. Further filter optimizations help limit the number of
non-coaccessible states created, for example, by examining more carefully the case
of states with only outgoing non-ε-transitions or only outgoing ε-transitions.

5.5.2 Rational kernels

The following establishes a general framework for the definition of sequence kernels.

Definition 5.5 Rational kernels
A kernel K : Σ∗ × Σ∗ → R is said to be rational if it coincides with the mapping
defined by some weighted transducer U : ∀x, y ∈ Σ∗,K(x, y) = U(x, y).

Note that we could have instead adopted a more general definition: instead of using
weighted transducers, we could have used more powerful sequence mappings such
as algebraic transductions, which are the functional counterparts of context-free
languages, or even more powerful ones. However, an essential need for kernels is
an efficient computation, and more complex definitions would lead to substantially
more costly computational complexities for kernel computation. For rational kernels,
there exists a general and efficient computation algorithm.

Computation We will assume that the transducer U defining a rational kernel
K does not admit any ε-cycle with non-zero weight, otherwise the kernel value is
infinite for all pairs. For any sequence x, let Tx denote a weighted transducer with
just one accepting path whose input and output labels are both x and its weight
equal to one. Tx can be straightforwardly constructed from x in linear time O(|x|).
Then, for any x, y ∈ Σ∗, U(x, y) can be computed by the following two steps:

1. Compute V = Tx◦U ◦Ty using the composition algorithm in time O(|U ||Tx||Ty|).
2. Compute the sum of the weights of all accepting paths of V using a general
shortest-distance algorithm in time O(|V |).
By definition of composition, V is a weighted transducer whose accepting paths are
precisely those accepting paths of U that have input label x and output label y.
The second step computes the sum of the weights of these paths, that is, exactly
U(x, y). Since U admits no ε-cycle, V is acyclic, and this step can be performed in
linear time. The overall complexity of the algorithm for computing U(x, y) is then
in O(|U ||Tx||Ty|). Since U is fixed for a rational kernel K and |Tx| = O(|x|) for any
x, this shows that the kernel values can be obtained in quadratic time O(|x||y|).
For some specific weighted transducers U , the computation can be more efficient,
for example in O(|x| + |y|) (see exercise 5.17).
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PDS rational kernels For any transducer T , let T−1 denote the inverse of T ,
that is the transducer obtained from T by swapping the input and output labels of
every transition. For all x, y, we have T−1(x, y) = T (y, x). The following theorem
gives a general method for constructing a PDS rational kernel from an arbitrary
weighted transducer.

Theorem 5.9

For any weighted transducer T = (Σ, Δ, Q, I, F,E, ρ), the function K = T ◦ T−1 is
a PDS rational kernel.

Proof By definition of composition and the inverse operation, for all x, y ∈ Σ∗,

K(x, y) =
∑

z∈Δ∗
T (x, z) T (y, z).

K is the pointwise limit of the kernel sequence (Kn)n≥0 defined by:

∀n ∈ N,∀x, y ∈ Σ∗, Kn(x, y) =
∑
|z|≤n

T (x, z) T (y, z),

where the sum runs over all sequences in Δ∗ of length at most n. Kn is PDS
since its corresponding kernel matrix Kn for any sample (x1, . . . , xm) is SPSD.
This can be see form the fact that Kn can be written as Kn = AA� with
A = (Kn(xi, zj))i∈[1,m],j∈[1,N ], where z1, . . . , zN is some arbitrary enumeration of
the set of strings in Σ∗ with length at most n. Thus, K is PDS as the pointwise
limit of the sequence of PDS kernels (Kn)n∈N.

The sequence kernels commonly used in computational biology, natural language
processing, computer vision, and other applications are all special instances of
rational kernels of the form T ◦T−1. All of these kernels can be computed efficiently
using the same general algorithm for the computational of rational kernels presented
in the previous paragraph. Since the transducer U = T ◦ T−1 defining such PDS
rational kernels has a specific form, there are different options for the computation
of the composition Tx ◦ U ◦ Ty:

compute U = T ◦ T−1 first, then V = Tx ◦ U ◦ Ty;

compute V1 = Tx ◦ T and V2 = Ty ◦ T first, then V = V1 ◦ V −1
2 ;

compute first V1 = Tx ◦ T , then V2 = V1 ◦ T−1, then V = V2 ◦ Ty, or the similar
series of operations with x and y permuted.

All of these methods lead to the same result after computation of the sum of the
weights of all accepting paths, and they all have the same worst-case complexity.
However, in practice, due to the sparsity of intermediate compositions, there may
be substantial differences between their time and space computational costs. An
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Figure 5.6 (a) Transducer Tbigram defining the bigram kernel Tbigram◦T−1
bigram for Σ =

{a, b}. (b) Transducer Tgappy bigram defining the gappy bigram kernel Tgappy bigram ◦
T−1

gappy bigram with gap penalty λ ∈ (0, 1).

alternative method based on an n-way composition can further lead to significantly
more efficient computations.

Example 5.5 Bigram and gappy bigram sequence kernels

Figure 5.6a shows a weighted transducer Tbigram defining a common sequence
kernel, the bigram sequence kernel , for the specific case of an alphabet reduced
to Σ = {a, b}. The bigram kernel associates to any two sequences x and y the sum
of the product of the counts of all bigrams in x and y. For any sequence x ∈ Σ∗ and
any bigram z ∈ {aa, ab, ba, bb}, Tbigram(x, z) is exactly the number of occurrences
of the bigram z in x. Thus, by definition of composition and the inverse operation,
Tbigram ◦ T−1

bigram computes exactly the bigram kernel.
Figure 5.6b shows a weighted transducer Tgappy bigram defining the so-called gappy

bigram kernel. The gappy bigram kernel associates to any two sequences x and y

the sum of the product of the counts of all gappy bigrams in x and y penalized
by the length of their gaps. Gappy bigrams are sequences of the form aua, aub,
bua, or bub, where u ∈ Σ∗ is called the gap. The count of a gappy bigram is
multiplied by |u|λ for some fixed λ ∈ (0, 1) so that gappy bigrams with longer
gaps contribute less to the definition of the similarity measure. While this definition
could appear to be somewhat complex, figure 5.6 shows that Tgappy bigram can be
straightforwardly derived from Tbigram. The graphical representation of rational
kernels helps understanding or modifying their definition.

Counting transducers The definition of most sequence kernels is based on the
counts of some common patterns appearing in the sequences. In the examples
just examined, these were bigrams or gappy bigrams. There exists a simple and
general method for constructing a weighted transducer counting the number of
occurrences of patterns and using them to define PDS rational kernels. Let X be
a finite automaton representing the set of patterns to count. In the case of bigram
kernels with Σ = {a, b}, X would be an automaton accepting exactly the set of
strings {aa, ab, ba, bb}. Then, the weighted transducer of figure 5.7 can be used to
compute exactly the number of occurrences of each pattern accepted by X.
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0

a:ε/1
b:ε/1

1/1X:X/1

a:ε/1
b:ε/1

Figure 5.7 Counting transducer Tcount for Σ = {a, b}. The “transition” X : X/1

stands for the weighted transducer created from the automaton X by adding to
each transition an output label identical to the existing label, and by making all
transition and final weights equal to one.

Theorem 5.10

For any x ∈ Σ∗ and any sequence z accepted by X, Tcount(x, z) is the number of
occurrences of z in x.

Proof Let x ∈ Σ∗ be an arbitrary sequence and let z be a sequence accepted by
X. Since all accepting paths of Tcount have weight one, Tcount(x, z) is equal to the
number of accepting paths in Tcount with input label x and output z.

Now, an accepting path π in Tcount with input x and output z can be decomposed
as π = π0 π01 π1, where π0 is a path through the loops of state 0 with input label
some prefix x0 of x and output label ε, π01 an accepting path from 0 to 1 with input
and output labels equal to z, and π1 a path through the self-loops of state 1 with
input label a suffix x1 of x and output ε. Thus, the number of such paths is exactly
the number of distinct ways in which we can write sequence x as x = x0zx1, which
is exactly the number of occurrences of z in x.

The theorem provides a very general method for constructing PDS rational kernels
Tcount ◦ T−1

count that are based on counts of some patterns that can be defined
via a finite automaton, or equivalently a regular expression. Figure 5.7 shows the
transducer for the case of an input alphabet reduced to Σ = {a, b}. The general
case can be obtained straightforwardly by augmenting states 0 and 1 with other
self-loops using other symbols than a and b. In practice, a lazy evaluation can be
used to avoid the explicit creation of these transitions for all alphabet symbols and
instead creating them on-demand based on the symbols found in the input sequence
x. Finally, one can assign different weights to the patterns counted to emphasize
or deemphasize some, as in the case of gappy bigrams. This can be done simply by
changing the transitions weight or final weights of the automaton X used in the
definition of Tcount.
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5.6 Chapter notes

The mathematical theory of PDS kernels in a general setting originated with the
fundamental work of Mercer [1909] who also proved the equivalence of a condition
similar to that of theorem 5.1 for continuous kernels with the PDS property. The
connection between PDS and NDS kernels, in particular theorems 5.8 and 5.7,
are due to Schoenberg [1938]. A systematic treatment of the theory of reproducing
kernel Hilbert spaces was presented in a long and elegant paper by Aronszajn [1950].
For an excellent mathematical presentation of PDS kernels and positive definite
functions we refer the reader to Berg, Christensen, and Ressel [1984], which is also
the source of several of the exercises given in this chapter.

The fact that SVMs could be extended by using PDS kernels was pointed out
by Boser, Guyon, and Vapnik [1992]. The idea of kernel methods has been since
then widely adopted in machine learning and applied in a variety of different tasks
and settings. The following two books are in fact specifically devoted to the study
of kernel methods: Schölkopf and Smola [2002] and Shawe-Taylor and Cristianini
[2004]. The classical representer theorem is due to Kimeldorf and Wahba [1971].
A generalization to non-quadratic cost functions was stated by Wahba [1990]. The
general form presented in this chapter was given by Schölkopf, Herbrich, Smola,
and Williamson [2000].

Rational kernels were introduced by Cortes, Haffner, and Mohri [2004]. A general
class of kernels, convolution kernels, was earlier introduced by Haussler [1999]. The
convolution kernels for sequences described by Haussler [1999], as well as the pair-
HMM string kernels described by Watkins [1999], are special instances of rational
kernels. Rational kernels can be straightforwardly extended to define kernels for
finite automata and even weighted automata [Cortes et al., 2004]. Cortes, Mohri,
and Rostamizadeh [2008b] study the problem of learning rational kernels such as
those based on counting transducers.

The composition of weighted transducers and the filter transducers in the presence
of ε-paths are described in Pereira and Riley [1997], Mohri, Pereira, and Riley [2005],
and Mohri [2009]. Composition can be further generalized to the N -way composition
of weighted transducers [Allauzen and Mohri, 2009]. N -way composition of three
or more transducers can substantially speed up computation, in particular for PDS
rational kernels of the form T ◦T−1. A generic shortest-distance algorithm which can
be used with a large class of semirings and arbitrary queue disciplines is described by
Mohri [2002]. A specific instance of that algorithm can be used to compute the sum
of the weights of all paths as needed for the computation of rational kernels after
composition. For a study of the class of languages linearly separable with rational
kernels , see Cortes, Kontorovich, and Mohri [2007a].
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5.7 Exercises

5.1 Let K : X ×X → R be a PDS kernel, and let α : X → R be a positive function.
Show that the kernel K ′ defined for all x, y ∈ X by K ′(x, y) = K(x,y)

α(x)α(y) is a PDS
kernel.

5.2 Show that the following kernels K are PDS:

(a) K(x, y) = cos(x − y) over R × R.

(b) K(x, y) = cos(x2 − y2) over R × R.

(c) K(x, y) = (x + y)−1 over (0, +∞) × (0, +∞).

(d) K(x,x′) = cos ∠(x,x′) over R
n × R

n, where ∠(x,x′) is the angle between
x and x′.

(e) ∀λ > 0, K(x, x′) = exp
( − λ[sin(x′ − x)]2

)
over R × R. (Hint : rewrite

[sin(x′ − x)]2 as the square of the norm of the difference of two vectors.)

5.3 Show that the following kernels K are NDS:

(a) K(x, y) = [sin(x − y)]2 over R × R.

(b) K(x, y) = log(x + y) over (0, +∞) × (0, +∞).

5.4 Define a difference kernel as K(x, x′) = |x − x′| for x, x′ ∈ R. Show that this
kernel is not positive definite symmetric (PDS).

5.5 Is the kernel K defined over R
n ×R

n by K(x,y) = ‖x−y‖3/2 PDS? Is it NDS?

5.6 Let H be a Hilbert space with the corresponding dot product 〈·, ·〉. Show that
the kernel K defined over H × H by K(x, y) = 1 − 〈x, y〉 is negative definite.

5.7 For any p > 0, let Kp be the kernel defined over R+ × R+ by

Kp(x, y) = e−(x+y)p

. (5.21)

Show that Kp is positive definite symmetric (PDS) iff p ≤ 1. (Hint : you can use the
fact that if K is NDS, then for any 0 < α ≤ 1, Kα is also NDS.)

5.8 Explicit mappings.

(a) Denote a data set x1, . . . , xm and a kernel K(xi, xj) with a Gram matrix
K. Assuming K is positive semidefinite, then give a map Φ(·) such that
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K(xi, xj) = 〈Φ(xi), Φ(xj)〉.
(b) Show the converse of the previous statement, i.e., if there exists a mapping
Φ(x) from input space to some Hilbert space, then the corresponding matrix
K is positive semidefinite.

5.9 Explicit polynomial kernel mapping. Let K be a polynomial kernel of degree d,
i.e., K : R

N ×R
N → R, K(x,x′) = (x ·x′+c)d, with c > 0, Show that the dimension

of the feature space associated to K is(
N + d

d

)
. (5.22)

Write K in terms of kernels ki : (x,x′) �→ (x · x′)i, i ∈ [0, d]. What is the weight
assigned to each ki in that expression? How does it vary as a function of c?

5.10 High-dimensional mapping. Let Φ: X → H be a feature mapping such that
the dimension N of H is very large and let K : X ×X → R be a PDS kernel defined
by

K(x, x′) = E
i∼D

[
[Φ(x)]i[Φ(x′)]i

]
, (5.23)

where [Φ(x)]i is the ith component of Φ(x) (and similarly for Φ′(x)) and where
D is a distribution over the indices i. We shall assume that |[Φ(x)]i| ≤ R for all
x ∈ X and i ∈ [1, N ]. Suppose that the only method available to compute K(x, x′)
involved direct computation of the inner product (5.23), which would require O(N)
time. Alternatively, an approximation can be computed based on random selection
of a subset I of the N components of Φ(x) and Φ(x′) according to D, that is:

K ′(x, x′) =
1
n

∑
i∈I

D(i)[Φ(x)]i[Φ(x′)]i, (5.24)

where |I| = n.

(a) Fix x and x′ in X. Prove that

Pr
I∼Dn

[|K(x, x′) − K ′(x, x′)| > ε] ≤ 2e
−nε2

2r2 . (5.25)

(Hint : use McDiarmid’s inequality).

(b) Let K and K′ be the kernel matrices associated to K and K ′. Show
that for any ε, δ > 0, for n > r2

ε2 log m(m+1)
δ , with probability at least 1 − δ,

|K′
ij − Kij | ≤ ε for all i, j ∈ [1,m].

5.11 Classifier based kernel. Let S be a training sample of size m. Assume that
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S has been generated according to some probability distribution D(x, y), where
(x, y) ∈ X × {−1, +1}.

(a) Define the Bayes classifier h∗ : X → {−1, +1}. Show that the kernel K∗

defined by K∗(x, x′) = h∗(x)h∗(x′) for any x, x′ ∈ X is positive definite
symmetric. What is the dimension of the natural feature space associated to
K∗?

(b) Give the expression of the solution obtained using SVMs with this kernel.
What is the number of support vectors? What is the value of the margin? What
is the generalization error of the solution obtained? Under what condition are
the data linearly separable?

(c) Let h : X → R be an arbitrary real-valued function. Under what condition
on h is the kernel K defined by K(x, x′) = h(x)h(x′), x, x′ ∈ X, positive
definite symmetric?

5.12 Image classification kernel. For α ≥ 0, the kernel

Kα : (x,x′) �→
N∑

k=1

min(|xk|α, |x′
k|α) (5.26)

over R
N × R

N is used in image classification. Show that Kα is PDS for all α ≥ 0.
To do so, proceed as follows.

(a) Use the fact that (f, g) �→ ∫ +∞
t=0

f(t)g(t)dt is an inner product over the set
of measurable functions over [0, +∞) to show that (x, x′) �→ min(x, x′) is a
PDS kernel. (Hint : associate an indicator function to x and another one to x′.)

(b) Use the result from (a) to first show that K1 is PDS and similarly that Kα

with other values of α is also PDS.

5.13 Fraud detection. To prevent fraud, a credit-card company decides to contact
Professor Villebanque and provides him with a random list of several thousand
fraudulent and non-fraudulent events. There are many different types of events,
e.g., transactions of various amounts, changes of address or card-holder information,
or requests for a new card. Professor Villebanque decides to use SVMs with an
appropriate kernel to help predict fraudulent events accurately. It is difficult for
Professor Villebanque to define relevant features for such a diverse set of events.
However, the risk department of his company has created a complicated method to
estimate a probability Pr[U ] for any event U . Thus, Professor Villebanque decides
to make use of that information and comes up with the following kernel defined
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over all pairs of events (U, V ):

K(U, V ) = Pr[U ∧ V ] − Pr[U ] Pr[V ]. (5.27)

Help Professor Villebanque show that his kernel is positive definite symmetric.

5.14 Relationship between NDS and PDS kernels. Prove the statement of theo-
rem 5.7. (Hint : Use the fact that if K is PDS then exp(K) is also PDS, along with
theorem 5.6.)

5.15 Metrics and Kernels. Let X be a non-empty set and K : X × X → R be a
negative definite symmetric kernel such that K(x, x) = 0 for all x ∈ X .

(a) Show that there exists a Hilbert space H and a mapping Φ(x) from X to
H such that:

K(x, y) = ||Φ(x) − Φ(x′)||2 .

Assume that K(x, x′) = 0 ⇒ x = x′. Use theorem 5.6 to show that
√

K defines
a metric on X .

(b) Use this result to prove that the kernel K(x, y) = exp(−|x−x′|p), x, x′ ∈ R,
is not positive definite for p > 2.

(c) The kernel K(x, x′) = tanh(a(x·x′)+b) was shown to be equivalent to a two-
layer neural network when combined with SVMs. Show that K is not positive
definite if a < 0 or b < 0. What can you conclude about the corresponding
neural network when a < 0 or b < 0?

5.16 Sequence kernels. Let X = {a, c, g, t}. To classify DNA sequences using SVMs,
we wish to define a kernel between sequences defined over X. We are given a finite
set I ⊂ X∗ of non-coding regions (introns). For x ∈ X∗, denote by |x| the length
of x and by F (x) the set of factors of x, i.e., the set of subsequences of x with
contiguous symbols. For any two strings x, y ∈ X∗ define K(x, y) by

K(x, y) =
∑

z ∈(F (x)∩F (y))−I

ρ|z|, (5.28)

where ρ ≥ 1 is a real number.

(a) Show that K is a rational kernel and that it is positive definite symmetric.

(b) Give the time and space complexity of the computation of K(x, y) with
respect to the size s of a minimal automaton representing X∗ − I.

(c) Long common factors between x and y of length greater than or equal to
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n are likely to be important coding regions (exons). Modify the kernel K to
assign weight ρ

|z|
2 to z when |z| ≥ n, ρ

|z|
1 otherwise, where 1 ≤ ρ1 & ρ2. Show

that the resulting kernel is still positive definite symmetric.

5.17 n-gram kernel. Show that for all n ≥ 1, and any n-gram kernel Kn, Kn(x, y)
can be computed in linear time O(|x| + |y|), for all x, y ∈ Σ∗ assuming n and the
alphabet size are constants.

5.18 Mercer’s condition. Let X ⊂ R
N be a compact set and K : X × X → R a

continuous kernel function. Prove that if K verifies Mercer’s condition (theorem 5.1),
then it is PDS. (Hint : assume that K is not PDS and consider a set {x1, . . . , xm} ⊆
X and a column-vector c ∈ R

m×1 such that
∑m

i,j=1 cicjK(xi, xj) < 0.)
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Ensemble methods are general techniques in machine learning for combining several
predictors to create a more accurate one. This chapter studies an important family of
ensemble methods known as boosting, and more specifically the AdaBoost algorithm.
This algorithm has been shown to be very effective in practice in some scenarios and
is based on a rich theoretical analysis. We first introduce AdaBoost, show how it can
rapidly reduce the empirical error as a function of the number of rounds of boosting,
and point out its relationship with some known algorithms. Then we present a
theoretical analysis of its generalization properties based on the VC-dimension of
its hypothesis set and based on a notion of margin that we will introduce. Much of
that margin theory can be applied to other similar ensemble algorithms. A game-
theoretic interpretation of AdaBoost further helps analyzing its properties. We end
with a discussion of AdaBoost’s benefits and drawbacks.

6.1 Introduction

It is often difficult, for a non-trivial learning task, to directly devise an accurate
algorithm satisfying the strong PAC-learning requirements of chapter 2. But, there
can be more hope for finding simple predictors guaranteed only to perform slightly
better than random. The following gives a formal definition of such weak learners.

Definition 6.1 Weak learning
A concept class C is said to be weakly PAC-learnable if there exists an algorithm
A, γ > 0, and a polynomial function poly(·, ·, ·, ·) such that for any ε > 0 and δ > 0,
for all distributions D on X and for any target concept c ∈ C, the following holds
for any sample size m ≥ poly(1/ε, 1/δ, n, size(c)):

Pr
S∼Dm

[
R(hS) ≤ 1

2
− γ

]
≥ 1 − δ. (6.1)

When such an algorithm A exists, it is called a weak learning algorithm for C or a
weak learner. The hypotheses returned by a weak learning algorithm are called base
classifiers.
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AdaBoost(S = ((x1, y1), . . . , (xm, ym)))

1 for i ← 1 to m do

2 D1(i) ← 1
m

3 for t ← 1 to T do

4 ht ← base classifier in H with small error εt = Pri∼Dt
[ht(xi) �= yi]

5 αt ← 1
2 log 1−εt

εt

6 Zt ← 2[εt(1 − εt)]
1
2 � normalization factor

7 for i ← 1 to m do

8 Dt+1(i) ← Dt(i) exp(−αtyiht(xi))
Zt

9 g ←∑T
t=1 αtht

10 return h = sgn(g)

Figure 6.1 AdaBoost algorithm for H ⊆ {−1, +1}X .

The key idea behind boosting techniques is to use a weak learning algorithm
to build a strong learner , that is, an accurate PAC-learning algorithm. To do so,
boosting techniques use an ensemble method: they combine different base classifiers
returned by a weak learner to create a more accurate predictor. But which base
classifiers should be used and how should they be combined? The next section
addresses these questions by describing in detail one of the most prevalent and
successful boosting algorithms, AdaBoost.

6.2 AdaBoost

We denote by H the hypothesis set out of which the base classifiers are selected.
Figure 6.1 gives the pseudocode of AdaBoost in the case where the base classifiers
are functions mapping from X to {−1, +1}, thus H ⊆ {−1, +1}X .

The algorithm takes as input a labeled sample S = ((x1, y1), . . . , (xm, ym)), with
(xi, yi) ∈ X × {−1, +1} for all i ∈ [1,m], and maintains a distribution over the
indices {1, . . . ,m}. Initially (lines 1-2), the distribution is uniform (D1). At each
round of boosting , that is each iteration t ∈ [1, T ] of the loop 3–8, a new base classifier
ht ∈ H is selected that minimizes the error on the training sample weighted by the
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t = 1 t = 2 t = 3

decision 
boundary

updated
weights

(a)

=α1 + α3+ α2

(b)

Figure 6.2 Example of AdaBoost with axis-aligned hyperplanes as base learners.
(a) The top row shows decision boundaries at each boosting round. The bottom row
shows how weights are updated at each round, with incorrectly (resp., correctly)
points given increased (resp., decreased) weights. (b) Visualization of final classifier,
constructed as a linear combination of base learners.

distribution Dt:

ht ∈ argmin
h∈H

Pr
i∼Dt

[ht(xi) �= yi] = argmin
h∈H

m∑
i=1

Dt(i)1h(xi) �=yi
.

Zt is simply a normalization factor to ensure that the weights Dt+1(i) sum to one.
The precise reason for the definition of the coefficient αt will become clear later. For
now, observe that if εt, the error of the base classifier, is less than 1/2, then 1−εt

εt
> 1

and αt > 0. Thus, the new distribution Dt+1 is defined from Dt by substantially
increasing the weight on i if point xi is incorrectly classified (yiht(xi) < 0), and, on
the contrary, decreasing it if xi is correctly classified. This has the effect of focusing
more on the points incorrectly classified at the next round of boosting, less on those
correctly classified by ht.
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After T rounds of boosting, the classifier returned by AdaBoost is based on the
sign of function g, which is a linear combination of the base classifiers ht. The weight
αt assigned to ht in that sum is a logarithmic function of the ratio of the accuracy
1 − εt and error εt of ht. Thus, more accurate base classifiers are assigned a larger
weight in that sum. Figure 6.2 illustrates the AdaBoost algorithm. The size of the
points represents the distribution weight assigned to them at each boosting round.

For any t ∈ [1, T ], we will denote by gt the linear combination of the base classifiers
after t rounds of boosting: ft =

∑t
s=1 αtht. In particular, we have gT = g. The

distribution Dt+1 can be expressed in terms of gt and the normalization factors Zs,
s ∈ [1, t], as follows:

∀i ∈ [1,m], Dt+1(i) =
e−yigt(xi)

m
∏t

s=1 Zs

. (6.2)

We will make use of this identity several times in the proofs of the following sections.
It can be shown straightforwardly by repeatedly expanding the definition of the
distribution over the point xi:

Dt+1(i) =
Dt(i)e−αtyiht(xi)

Zt
=

Dt−1(i)e−αt−1yiht−1(xi)e−αtyiht(xi)

Zt−1Zt

=
e−yi

Pt
s=1 αshs(xi)

m
∏t

s=1 Zs

.

The AdaBoost algorithm can be generalized in several ways:

instead of a hypothesis with minimal weighted error, ht can be more generally
the base classifier returned by a weak learning algorithm trained on Dt;

the range of the base classifiers could be [−1, +1], or more generally R. The
coefficients αt can then be different and may not even admit a closed form. In
general, they are chosen to minimize an upper bound on the empirical error, as
discussed in the next section. Of course, in that general case, the hypothesis ht are
not binary classifiers, but the sign of their values could indicate the label, and their
magnitude could be interpreted as a measure of confidence.

In the remainder of this section, we will further analyze the properties of Ad-
aBoost and discuss its typical use in practice.

6.2.1 Bound on the empirical error

We first show that the empirical error of AdaBoost decreases exponentially fast as
a function of the number of rounds of boosting.
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Theorem 6.1

The empirical error of the classifier returned by AdaBoost verifies:

R̂(h) ≤ exp
[
− 2

T∑
t=1

(1
2

− εt

)2
]
. (6.3)

Furthermore, if for all t ∈ [1, T ], γ ≤ ( 1
2 − εt), then

R̂(h) ≤ exp(−2γ2T ) . (6.4)

Proof Using the general inequality 1u≤0 ≤ exp(−u) valid for all u ∈ R and
identity 6.2, we can write:

R̂(h) =
1
m

m∑
i=1

1yig(xi)≤0 ≤ 1
m

m∑
i=1

e−yig(xi) =
1
m

m∑
i=1

[
m

T∏
t=1

Zt

]
DT+1(i) =

T∏
t=1

Zt.

Since, for all t ∈ [1, T ], Zt is a normalization factor, it can be expressed in terms of
εt by:

Zt =
m∑

i=1

Dt(i)e−αtyiht(xi) =
∑

i:yiht(xi)=+1

Dt(i)e−αt +
∑

i:yiht(xi)=−1

Dt(i)eαt

= (1 − εt)e−αt + εte
αt

= (1 − εt)
√

εt

1 − εt
+ εt

√
1 − εt

εt
= 2

√
εt(1 − εt) .

Thus, the product of the normalization factors can be expressed and upper bounded
as follows:

T∏
t=1

Zt =
T∏

t=1

2
√

εt(1 − εt) =
T∏

t=1

√
1 − 4

(
1
2 − εt

)2 ≤
T∏

t=1

exp
[
− 2

(
1
2 − εt

)2]
= exp

[
− 2

T∑
t=1

(
1
2 − εt

)2]
,

where the inequality follows from the identity 1 − x ≤ e−x valid for all x ∈ R.

Note that the value of γ, which is known as the edge, and the accuracy of the base
classifiers do not need to be known to the algorithm. The algorithm adapts to their
accuracy and defines a solution based on these values. This is the source of the
extended name of AdaBoost: adaptive boosting .

The proof of theorem 6.1 reveals several other important properties. First, observe
that αt is the minimizer of the function g : α �→ (1 − εt)e−α + εte

α. Indeed, g is
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Figure 6.3 Visualization of the zero-one loss (blue) and the convex and differen-
tiable upper bound on the zero-one loss (red) that is optimized by AdaBoost.

convex and differentiable, and setting its derivative to zero yields:

g′(α) = −(1 − εt)e−α + εte
α = 0 ⇔ (1 − εt)e−α = εte

α ⇔ α =
1
2

log
1 − εt

εt
. (6.5)

Thus, αt is chosen to minimize Zt = g(αt), and in light of the bound R̂(h) ≤∏T
t=1 Zt

shown in the proof, these coefficients are selected to minimize an upper bound on
the empirical error. In fact, for base classifiers whose range is [−1, +1] or R, αt

can be chosen in a similar fashion to minimize Zt, and this is the way AdaBoost is
extended to these more general cases.

Observe also that the equality (1 − εt)e−αt = εte
αt just shown in (6.5) implies

that at each iteration, AdaBoost assigns equal distribution mass to correctly and
incorrectly classified instances, since (1−εt)e−αt is the total distribution assigned to
correctly classified points and εte

αt that of incorrectly classified ones. This may seem
to contradict the fact that AdaBoost increases the weights of incorrectly classified
points and decreases that of others, but there is in fact no inconsistency: the reason
is that there are always fewer incorrectly classified points, since the base classifier’s
accuracy is better than random.

6.2.2 Relationship with coordinate descent

AdaBoost was designed to address a novel theoretical question, that of designing a
strong learning algorithm using a weak learning algorithm. We will show, however,
that it coincides in fact with a very simple and classical algorithm, which consists
of applying a coordinate descent technique to a convex and differentiable objective
function. The objective function F for AdaBoost is defined for all samples S =
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((x1, y1), . . . , (xm, ym)) and α = (α1, . . . , αn) ∈ R
n, n ≥ 1, by

F (α) =
m∑

i=1

e−yign(xi) =
m∑

i=1

e−yi
Pn

t=1 αtht(xi), (6.6)

where gn =
∑n

t=1 αtht. This function is an upper bound on the zero-one loss
function we wish to minimize, as shown in figure 6.3. Let et denote the unit vector
corresponding to the tth coordinate in R

n and let αt−1 denote the vector based
on the (t − 1) first coefficients, i.e. αt−1 = (α1, . . . , αt−1, 0, . . . , 0)� if t − 1 > 0,
αt−1 = 0 otherwise. At each iteration t ≥ 1, the direction et selected by coordinate
descent is the one minimizing the directional derivative:

et = argmin
t

dF (αt−1 + ηet)
dη

∣∣∣∣
η=0

.

Since F (αt−1 + ηet) =
∑m

i=1 e−yi

Pt−1
s=1 αshs(xi)−yiηht(xi), the directional derivative

along et can be expressed as follows:

dF (αt−1 + ηet)
dη

∣∣∣∣
η=0

= −
m∑

i=1

yiht(xi) exp
[
− yi

t−1∑
s=1

αshs(xi)
]

= −
m∑

i=1

yiht(xi)Dt(i)
[
m

t−1∏
s=1

Zs

]
= −

[ ∑
i:yiht(xi)=+1

Dt(i) −
∑

i:yiht(xi)=−1

Dt(i)
][

m
t−1∏
s=1

Zs

]

= −[(1 − εt) − εt]
[
m

t−1∏
s=1

Zs

]
= [2εt − 1]

[
m

t−1∏
s=1

Zs

]
.

The first equality holds by differentiation and evaluation at η = 0, and the second
one follows from (6.2). The third equality divides the sample set into points correctly
and incorrectly classified by ht, and the fourth equality uses the definition of εt. In
view of the final equality, since m

∏t−1
s=1 Zs is fixed, the direction et selected by

coordinate descent is the one minimizing εt, which corresponds exactly to the base
learner ht selected by AdaBoost.

The step size η is identified by setting the derivative to zero in order to minimize
the function in the chosen direction et. Thus, using identity 6.2 and the definition
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Figure 6.4 Examples of several convex upper bounds on the zero-one loss.

of εt, we can write:

dF (αt−1 + ηet)
dη

= 0 ⇔ −
m∑

i=1

yiht(xi) exp
[
− yi

t−1∑
s=1

αshs(xi)
]
e−ηyiht(xi) = 0

⇔ −
m∑

i=1

yiht(xi)Dt(i)
[
m

t−1∏
s=1

Zs

]
e−yiht(xi)η = 0

⇔ −
m∑

i=1

yiht(xi)Dt(i)e−yiht(xi)η = 0

⇔ −[(1 − εt)e−η − εte
η] = 0

⇔ η =
1
2

log
1 − εt

εt
.

This proves that the step size chosen by coordinate descent matches the base
classifier weight αt of AdaBoost. Thus, coordinate descent applied to F precisely
coincides with the AdaBoost algorithm.

In light of this relationship, one may wish to consider similar applications of
coordinate descent to other convex and differentiable functions of α upper-bounding
the zero-one loss. In particular, the logistic loss x �→ log2(1 + e−x) is convex and
differentiable and upper bounds the zero-one loss. Figure 6.4 shows other examples
of alternative convex loss functions upper-bounding the zero-one loss. Using the
logistic loss, instead of the exponential loss used by AdaBoost, leads to an algorithm
that coincides with logistic regression.
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6.2.3 Relationship with logistic regression

Logistic regression is a widely used binary classification algorithm, a specific instance
of conditional maximum entropy models. For the purpose of this chapter, we
first give a very brief description of the algorithm. Logistic regression returns a
conditional probability distribution of the form

pα[y|x] =
1

Z(x)
exp(y α · Φ(x)), (6.7)

where y ∈ {−1, +1} is the label predicted for x ∈ X , Φ(x) ∈ R
N is a feature vector

associated to x, α ∈ R
N a parameter weight vector, and Z(x) = e+α·Φ(x)+e−α·Φ(x)

a normalization factor. Dividing both the numerator and denominator by e+α·Φ(x)

and taking the log leads to:

log(pα[y|x]) = − log(1 + e−2yα·Φ(x)). (6.8)

The parameter α is learned via maximum likelihood by logistic regression, that is,
by maximizing the probability of the sample S = ((x1, ys), . . . , (xm, ym)). Since the
points are sampled i.i.d., this can be written as follows: argmaxα

∏m
i=1 pα[yi|xi].

Taking the negative log of the probabilities shows that the objective function
minimized by logistic regression is

G(α) =
m∑

i=1

log(1 + e−2yiα·Φ(xi)) . (6.9)

Thus, modulo constants, which do not affect the solution sought, the objective
function coincides with the one based on the logistic loss. AdaBoost and Logistic
regression have in fact many other relationships that we will not discuss in detail
here. In particular, it can be shown that both algorithms solve exactly the same
optimization problem, except for a normalization constraint required for logistic
regression not imposed in the case of AdaBoost.

6.2.4 Standard use in practice

Here we briefly describe the practical use of AdaBoost. An important requirement
for the algorithm is the choice of the base classifiers or that of the weak learner. The
family of base classifiers typically used with AdaBoost in practice is that of decision
trees, which are equivalent to hierarchical partitions of the space (see chapter 8,
section 8.3.3). In fact, more precisely, decision trees of depth one, also known as
stumps or boosting stumps are by far the most frequently used base classifiers.

Boosting stumps are threshold functions associated to a single feature. Thus,
a stump corresponds to a single axis-aligned partition of the space, as illustrated
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Figure 6.5 An empirical result using AdaBoost with C4.5 decision trees as base
learners. In this example, the training error goes to zero after about 5 rounds of
boosting (T ≈ 5), yet the test error continues to decrease for larger values of T .

in figure 6.2. If the data is in R
N , we can associate a stump to each of the N

components. Thus, to determine the stump with the minimal weighted error at
each of round of boosting, the best component and the best threshold for each
component must be computed.

To do so, we can first presort each component in O(m log m) time with a total
computational cost of O(mN log m). For a given component, there are only m + 1
possible distinct thresholds, since two thresholds between the same consecutive
component values are equivalent. To find the best threshold at each round of
boosting, all of these possible m + 1 values can be compared, which can be done in
O(m) time. Thus, the total computational complexity of the algorithm for T rounds
of boosting is O(mN log m + mNT ).

Observe, however, that while boosting stumps are widely used in combination
with AdaBoost and can perform well in practice, the algorithm that returns the
stump with the minimal empirical error is not a weak learner (see definition 6.1)!
Consider, for example, the simple XOR example with four data points lying in
R

2 (see figure 5.2a), where points in the second and fourth quadrants are labeled
positively and those in the first and third quadrants negatively. Then, no decision
stump can achieve an accuracy better than 1/2.

6.3 Theoretical results

In this section we present a theoretical analysis of the generalization properties of
AdaBoost.
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6.3.1 VC-dimension-based analysis

We start with an analysis of AdaBoost based on the VC-dimension of its hypothesis
set. For T rounds of boosting, its hypothesis set is

FT =
{

sgn
( T∑

t=1

αtht

)
: αt ∈ R, ht ∈ H, t ∈ [1, T ]

}
. (6.10)

The VC-dimension of FT can be bounded as follows in terms of the VC-dimension
d of the family of base hypothesis H (exercise 6.1):

VCdim(FT ) ≤ 2(d + 1)(T + 1) log2((T + 1)e) . (6.11)

The upper bound grows as O(dT log T ), thus the bound suggests that AdaBoost
could overfit for large values of T , and indeed this can occur. However, in many
cases, it has been observed empirically that the generalization error of AdaBoost
decreases as a function of the number of rounds of boosting T , as illustrated in
figure 6.5! How can these empirical results be explained? The following sections
present an analysis based on a concept of margin, similar to the one presented for
SVMs.

6.3.2 Margin-based analysis

In chapter 4 we gave a definition of margin for linear classifiers such as SVMs
(definition 4.2). Here we will need a somewhat different but related definition of
margin for linear combinations of base classifiers, as in the case of AdaBoost.

First note that a linear combination of base classifiers g =
∑T

t=1 αtht can be
defined equivalently via g(x) = α · h(x) for all x ∈ X , with α = (α1, . . . , αT )� and
h(x) = [h1(x), . . . , hT (x)]�. This makes their similarity with the linear hypotheses
considered in chapter 4 and chapter 5 evident: h(x) is the feature vector associated
to x, which was previously denoted by Φ(x), and α is the weight vector that was
denoted by w. The base classifiers values ht(x) are the components of the feature
vector associated to x. For AdaBoost, additionally, the weight vector is non-negative:
α ≥ 0.

We will use the same notation to introduce the following definition.

Definition 6.2 L1-margin
The L1-margin ρ(x) of a point x ∈ X with label y ∈ {−1, +1} for a linear
combination of base classifiers g =

∑T
t=1 αtht with α �= 0 and ht ∈ H for all

t ∈ [1, T ] is defined as

ρ(x) =
yg(x)∑m
t=T |αt| =

y
∑T

t=1 αtht(x)
‖α‖1

= y
α · h(x)
‖α‖1

. (6.12)
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The L1-margin of a linear combination classifier g with respect to a sample S =
(x1, . . . , xm) is the minimum margin of the points within the sample:

ρ = min
i∈[1,m]

yi
α · h(xi)

‖α‖1
. (6.13)

When the coefficients αt are non-negative, as in the case of AdaBoost, ρ(x) is a
convex combination of the base classifier values ht(x). In particular, if the base
classifiers ht take values in [−1, +1], then ρ(x) is in [−1, +1]. The absolute value
|ρ(x)| can be interpreted as the confidence of the classifier g in that label.

This definition of margin differs from definition 4.2 given for linear classifiers only
by the norm used for the weight vector: L1 norm here, L2 norm in definition 4.2.
Indeed, in the case of a linear hypothesis x �→ w ·Φ(x), the margin for point x with
label y was defined as follows:

ρ(x) = y
w · φ(x)
‖w‖2

and was based on the L2 norm of w. When the prediction is correct, that is
y(α · h(x)) ≥ 0, the L1-margin and L2 margin of definition 4.2 can be rewritten as

ρ1(x) =
|α · h(x)|

‖α‖1
and ρ2(x) =

|α · h(x)|
‖α‖2

.

It is known that for p, q ≥ 1, p and q conjugate, i.e. 1/p+1/q = 1, that |α ·x|/‖α‖p

is the Lq distance of x to the hyperplane of equation α ·x = 0. Thus, both ρ1(x) and
ρ2(x) measure the distance of the feature vector h(x) to the hyperplane α ·x = 0 in
R

T , ρ1(x) its ‖ · ‖∞ distance, ρ2(x) its ‖ · ‖2 or Euclidean distance (see figure 6.6).
To examine the generalization properties of AdaBoost, we first analyze the

Rademacher complexity of convex combinations of hypotheses such as those defined
by AdaBoost. Next, we use the margin-based analysis from chapter 4 to derive a
margin-based generalization bound for boosting with the definition of margin just
introduced.

For any hypothesis set H of real-valued functions, we denote by conv(H) its
convex hull defined by

conv(H) =
{ p∑

k=1

μkhk : p ≥ 1,∀k ∈ [1, p], μk ≥ 0, hk ∈ H,

p∑
k=1

μk ≤ 1
}

. (6.14)

The following theorem shows that, remarkably, the empirical Rademacher complex-
ity of conv(H), which in general is a strictly larger set including H, coincides with
that of H.
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Theorem 6.2

Let H be a set of functions mapping from X to R. Then, for any sample S, we have

R̂S(conv(H)) = R̂S(H) .

Proof The proof follows from a straightforward series of equalities:

R̂S(conv(H)) =
1
m

E
σ

[
sup

h1,...,hp∈H,μ≥0,‖μ‖1≤1

m∑
i=1

σi

p∑
k=1

μkhk(xi)
]

=
1
m

E
σ

[
sup

h1,...,hp∈H
sup

μ≥0,‖μ‖1≤1

p∑
k=1

μk

( m∑
i=1

σihk(xi)
)]

=
1
m

E
σ

[
sup

h1,...,hp∈H
max

k∈[1,p]

( m∑
i=1

σihk(xi)
)]

=
1
m

E
σ

[
sup
h∈H

m∑
i=1

σih(xi)
]

= R̂S(H).

The main equality to recognize is the third one, which is based on the observation
that the maximizing vector μ for the convex combination of p terms is the one
placing all the weight on the largest term of the sum.

This theorem can be used directly in combination with theorem 4.4 to derive
the following Rademacher complexity generalization bound for convex combination
ensembles of hypotheses.

Corollary 6.1 Ensemble Rademacher margin bound
Let H denote a set of real-valued functions. Fix ρ > 0. Then, for any δ > 0, with
probability at least 1 − δ, each of the following holds for all h ∈ conv(H):

R(h) ≤ R̂ρ(h) +
2
ρ
Rm

(
H
)

+

√
log 1

δ

2m
(6.15)

R(h) ≤ R̂ρ(h) +
2
ρ
R̂S

(
H
)

+ 3

√
log 2

δ

2m
. (6.16)

Using corollary 3.1 and corollary 3.3 to bound the Rademacher complexity in
terms of the VC-dimension yields immediately the following VC-dimension-based
generalization bounds for convex combination ensembles of hypotheses.

Corollary 6.2 Ensemble VC-Dimension margin bound
Let H be a family of functions taking values in {+1,−1} with VC-dimension d. Fix
ρ > 0. Then, for any δ > 0, with probability at least 1 − δ, the following holds for



134 Boosting

all h ∈ conv(H):

R(h) ≤ R̂ρ(h) +
2
ρ

√
2d log em

d

m
+

√
log 1

δ

2m
. (6.17)

These bounds can be generalized to hold uniformly for all ρ > 0, instead of a fixed
ρ, at the price of an additional term of the form

√
(log log2

2
δ )/m as in theorem 4.5.

They cannot be directly applied to the linear combination g generated by AdaBoost,
since it is not a convex combination of base hypotheses, but they can be applied to
the following normalized version of g:

x �→ g(x)
‖α‖1

=
∑T

t=1 αtht(x)
‖α‖1

∈ conv(H) . (6.18)

Note that from the point of view of binary classification, g and g/‖α‖1 are equivalent
since sgn(g) = sgn(g/‖α‖1), thus R(g) = R(g/‖α‖1), but their empirical margin
loss are distinct. Let g =

∑T
t=1 αtht denote the function defining the classifier

returned by AdaBoost after T rounds of boosting when trained on sample S. Then,
in view of (6.15), for any δ > 0, the following holds with probability at least 1 − δ:

R(g) ≤ R̂ρ(g/‖α‖1) +
2
ρ
Rm

(
H
)

+

√
log 1

δ

2m
. (6.19)

Similar bounds can be derived from (6.16) and (6.17). Remarkably, the number
of rounds of boosting T does not appear in the generalization bound (6.19). The
bound depends only on the margin ρ, the sample size m, and the Rademacher
complexity of the family of base classifiers H. Thus, the bound guarantees an
effective generalization if the margin loss R̂ρ(g/‖α‖1) is small for a relatively large
ρ. Recall that the margin loss can be upper bounded by the fraction of the points
x in the training sample with g(x)/‖α‖1 ≥ ρ (see (4.39)). Thus, with our definition
of L1-margin, it can be bounded by the fraction of the points in S with L1-margin
more than ρ:

R̂ρ(g/‖α‖1) ≤ |{i ∈ [1,m] : ρ(xi) ≥ ρ}|
m

. (6.20)

Additionally, the following theorem provides a bound on the empirical margin loss,
which decreases with T under conditions discussed later.

Theorem 6.3

Let g =
∑T

t=1 αtht denote the function defining the classifier returned by AdaBoost
after T rounds of boosting and assume for all t ∈ [1, T ] that εt < 1

2 , which implies
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at > 0. Then, for any ρ > 0, the following holds:

R̂ρ

(
g

‖α‖1

)
≤ 2T

T∏
t=1

√
ε1−ρ
t (1 − εt)1+ρ .

Proof Using the general inequality 1u≤0 ≤ exp(−u) valid for all u ∈ R, iden-
tity 6.2, that is Dt+1(i) = e−yig(xi)

m
QT

t=1 Zt
, the equality Zt = 2

√
εt(1 − εt) from the proof

of theorem 6.1, and the definition of α in AdaBoost, we can write:

1
m

m∑
i=1

1yig(xi)−ρ‖α‖1≤0 ≤ 1
m

m∑
i=1

exp(−yig(xi) + ρ‖α‖1)

=
1
m

m∑
i=1

eρ‖α‖1

[
m

T∏
t=1

Zt

]
DT+1(i)

= eρ‖α‖1

T∏
t=1

Zt = eρ
P

i αi

T∏
t=1

Zt

= 2T
T∏

t=1

[√
1−εt

εt

]ρ√
εt(1 − εt) ,

which concludes the proof.

Moreover, if for all t ∈ [1, T ] we have γ ≤ ( 1
2 − εt) and ρ ≤ 2γ, then the expression

4ε1−ρ
t (1−εt)1+ρ is maximized at εt = 1

2−γ.1 Thus, the upper bound on the empirical
margin loss can then be bounded by

R̂ρ

(
g

‖α‖1

)
≤
[
(1 − 2γ)1−ρ(1 + 2γ)1+ρ

]T/2

. (6.21)

Observe that (1 − 2γ)1−ρ(1 + 2γ)1+ρ = (1 − 4γ2)
(

1+2γ
1−2γ

)ρ. This is an increasing
function of ρ since we have

(
1+2γ
1−2γ

)
> 1 as a consequence of γ > 0. Thus, if ρ < γ,

it can be strictly upper bounded as follows

(1 − 2γ)1−ρ(1 + 2γ)1+ρ < (1 − 2γ)1−γ(1 + 2γ)1+γ .

The function γ �→ (1 − 2γ)1−γ(1 + 2γ)1+γ is strictly upper bounded by 1 over the
interval (0, 1/2), thus, if ρ < γ, then (1− 2γ)1−ρ(1+2γ)1+ρ < 1 and the right-hand
side of (6.21) decreases exponentially with T . Since the condition ρ " O(1/

√
m) is

necessary in order for the given margin bounds to converge, this places a condition

1. The differential of f : ε 	→ log[ε1−ρ(1− ε)1+ρ] = (1− ρ) log ε + (1 + ρ) log(1− ε) over the

interval (0, 1) is given by f ′(ε) = 1−ρ
ε
− 1+ρ

1−ε
= 2

( 1
2− ρ

2 )−ε

ε(1−e)
. Thus, f is an increasing function

over (0, 1
2
− ρ

2
), which implies that it is increasing over (0, 1

2
− γ) when γ ≥ ρ

2
.
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Figure 6.6 Maximum margins with respect to both the L2 and L∞ norm.

of γ " O(1/
√

m) on the edge value. In practice, the error εt of the base classifier at
round t may increase as a function of t. Informally, this is because boosting presses
the weak learner to concentrate on instances that are harder and harder to classify,
for which even the best base classifier could not achieve an error significantly better
than random. If εt becomes close to 1/2 relatively fast as a function of t, then the
bound of theorem 6.3 becomes uninformative.

The margin bounds of corollary 6.1 and corollary 6.2, combined with the bound
on the empirical margin loss of theorem 6.3, suggest that under some conditions,
AdaBoost can achieve a large margin on the training sample. They could also serve
as a theoretical explanation of the empirical observation that in some tasks the
generalization error increases as a function of T even after the error on the training
sample is zero: the margin would continue to increase. But does AdaBoost maximize
the L1-margin?

No. It has been shown that AdaBoost may converge to a margin that is signifi-
cantly smaller than the maximum margin (e.g., 1/3 instead of 3/8). However, under
some general assumptions, when the data is separable and the base learners satisfy
particular conditions, it has been proven that AdaBoost can asymptotically achieve
a margin that is at least half the maximum margin, ρmax/2.

6.3.3 Margin maximization

In view of these results, several algorithms have been devised with the explicit goal
of maximizing the L1-margin. These algorithms correspond to different methods for
solving a linear program (LP).

By definition of the L1-margin, the maximum margin for a sample S =
((x1, y1), . . . , (xm, ym)) is given by

ρ = max
α

min
i∈[1,m]

yi
α · h(xi)

‖α‖1
. (6.22)
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By definition of the maximization, the optimization problem can be written as:

max
α

ρ

subject to : yi
α · h(xi)

‖α‖1
≥ ρ, ∀i ∈ [1,m].

Since α·h(xi)
‖α‖1

is invariant to the scaling of α, we can restrict ourselves to ‖α‖1 = 1.
Further seeking a non-negative α as in the case of AdaBoost leads to the following
optimization:

max
α

ρ

subject to : yi(α · h(xi)) ≥ ρ, ∀i ∈ [1,m]( T∑
t=1

αt = 1
)

∧ (αt ≥ 0,∀t ∈ [1, T ]).

This is a linear program (LP), that is, an optimization problem with a linear
objective function and linear constraints. There are several different methods for
solving relative large LPs in practice, using the simplex method, interior-point
methods, or a variety of special-purpose solutions.

Note that the solution of this algorithm differs from the margin-maximization
defining SVMs in the separable case only by the definition of the margin used (L1

versus L2) and the non-negativity constraint on the weight vector. Figure 6.6 illus-
trates the margin-maximizing hyperplanes found using these two distinct margin
definitions in a simple case. The left figure shows the SVM solution, where the dis-
tance to the closest points to the hyperplane is measured with respect to the norm
‖ · ‖2. The right figure shows the solution for the L1-margin, where the distance to
the closest points to the hyperplane is measured with respect to the norm ‖ · ‖∞.

By definition, the solution of the LP just described admits an L1-margin that
is larger or equal to that of the AdaBoost solution. However, empirical results do
not show a systematic benefit for the solution of the LP. In fact, it appears that in
many cases, AdaBoost outperforms that algorithm. The margin theory described
does not seem sufficient to explain that performance.

6.3.4 Game-theoretic interpretation

In this section, we first show that AdaBoost admits a natural game-theoretic
interpretation. The application of von Neumann’s theorem then helps us relate the
maximum margin and the optimal edge and clarify the connection of AdaBoost’s
weak-learning assumption with the notion of L1-margin. We first introduce the
definition of the edge for a specific classifier and a particular distribution.
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rock paper scissors

rock 0 +1 -1

paper -1 0 +1

scissors +1 -1 0

Table 6.1 The loss matrix for the standard rock-paper-scissors game.

Definition 6.3

The edge of a base classifier ht for a distribution D over the training sample is
defined by

γt(D) =
1
2

− εt =
1
2

m∑
i=1

yiht(xi)D(i). (6.23)

AdaBoost’s weak learning condition can now be formulated as: there exists γ > 0
such that for any distribution D over the training sample and any base classifier ht,
the following holds:

γt(D) ≥ γ. (6.24)

This condition is required for the analysis of theorem 6.1 and the non-negativity of
the coefficients αt. We will frame boosting as a two-person zero-sum game.

Definition 6.4 Zero-sum game
A two-person zero-sum game consists of a loss matrix M ∈ R

m×n, where m is the
number of possible actions (or pure strategies) for the row player and n the number
of possible actions for the column player. The entry Mij is the loss for the row
player (or equivalently the payoff for the column payer) when the row player takes
action i and the column player takes action j.2

An example of a loss matrix for the familiar “rock-paper-scissors” game is shown
in table 6.1.

Definition 6.5 Mixed strategy
A mixed strategy for the row player is a distribution p over the m possible row
actions, a distribution q over the n possible column actions for the column player.
The expected loss for the row player (expected payoff for the column player) with

2. To be consistent with the results discussed in other chapters, we consider the loss matrix
as opposed to the payoff matrix (its opposite).
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respect to the mixed strategies p and q is

E[loss] = p�Mq =
m∑

i=1

n∑
j=1

piMijqj .

The following is a fundamental result in game theory proven in chapter 7.

Theorem 6.4 Von Neumann’s minimax theorem
For any two-person zero-sum game defined by matrix M,

min
p

max
q

p�Mq = max
q

min
p

p�Mq . (6.25)

The common value in (6.25) is called the value of the game. The theorem states
that for any two-person zero-sum game, there exists a mixed strategy for each player
such that the expected loss for one is the same as the expected payoff for the other,
both of which are equal to the value of the game. Note that, given the row player’s
strategy, the column player can choose an optimal pure strategy, that is, the column
player can choose the single strategy corresponding the smallest coordinate of the
vector p�M. A similar comment applies to the reverse. Thus, an alternative and
equivalent form of the minimax theorem is

max
p

min
j∈[1,n]

p�Mej = min
q

max
i∈[1,m]

e�i Mq, (6.26)

where ei denotes the ith unit vector. We can now view AdaBoost as a zero-sum
game, where an action of the row player is the selection of a training instance
xi, i ∈ [1,m], and an action of the column player the selection of a base learner
ht, t ∈ [1, T ]. A mixed strategy for the row player is thus a distribution D over
the training points’ indices [1,m]. A mixed strategy for the column player is a
distribution over the based classifiers’ indices [1, T ]. This can be defined from a
non-negative vector α ≥ 0: the weight assigned to t ∈ [1, T ] is αt/‖α‖1. The
loss matrix M ∈ {−1, +1}m×T for AdaBoost is defined by Mit = yiht(xi) for
all (i, t) ∈ [1,m] × [1, T ]. By von Neumann’s theorem (6.26), the following holds:

min
D∈D

max
t∈[1,T ]

m∑
i=1

D(i)yiht(xi) = max
α≥0

min
i∈[1,m]

T∑
t=1

αt

‖α‖1
yiht(xi), (6.27)

where D denotes the set of all distributions over the training sample. Let ρα(x)
denote the margin of point x for the classifier defined by g =

∑T
t=1 αtht. The result

can be rewritten as follows in terms of the margins and edges:

2γ∗ = 2 min
D

max
t∈[1,T ]

γt(D) = max
α

min
i∈[1,m]

ρα(xi) = ρ∗, (6.28)
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where ρ∗ is the maximum margin of a classifier and γ∗ the best possible edge. This
result has several implications. First, it shows that the weak learning condition
(γ∗ > 0) implies ρ∗ > 0 and thus the existence of a classifier with positive margin,
which motivates the search for a non-zero margin. AdaBoost can be viewed as an
algorithm seeking to achieve such a non-zero margin, though, as discussed earlier,
AdaBoost does not always achieve an optimal margin and is thus suboptimal in that
respect. Furthermore, we see that the “weak learning” assumption, which originally
appeared to be the weakest condition one could require for an algorithm (that of
performing better than random), is in fact a strong condition: it implies that the
training sample is linearly separable with margin 2γ∗ > 0. Linear separability often
does not hold for the data sets found in practice.

6.4 Discussion

AdaBoost offers several advantages: it is simple, its implementation is straightfor-
ward, and the time complexity of each round of boosting as a function of the sample
size is rather favorable. As already discussed, when using decision stumps, the time
complexity of each round of boosting is in O(mN). Of course, if the dimension of
the feature space N is very large, then the algorithm could become in fact quite
slow.

AdaBoost additionally benefits from a rich theoretical analysis. Nevertheless,
there are still many theoretical questions. For example, as we saw, the algorithm in
fact does not maximize the margin, and yet algorithms that do maximize the margin
do not always outperform it. This suggests that perhaps a finer analysis based on a
notion different from that of margin could shed more light on the properties of the
algorithm.

The main drawbacks of the algorithm are the need to select the parameter T and
the base classifiers, and its poor performance in the presence of noise. The choice of
the number of rounds of boosting T (stopping criterion) is crucial to the performance
of the algorithm. As suggested by the VC-dimension analysis, larger values of T can
lead to overfitting. In practice, T is typically determined via cross-validation.

The choice of the base classifiers is also crucial. The complexity of the family
of base classifiers H appeared in all the bounds presented and it is important to
control it in order to guarantee generalization. On the other hand, insufficiently
complex hypothesis sets could lead to low margins.

Probably the most serious disadvantage of AdaBoost is its performance in the
presence of noise; it has been shown empirically that noise severely damages its
accuracy. The distribution weight assigned to examples that are harder to classify
substantially increases with the number of rounds of boosting, by the nature of the
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algorithm. These examples end up dominating the selection of the base classifiers,
which, with a large enough number of rounds, will play a detrimental role in the
definition of the linear combination defined by AdaBoost.

Several solutions have been proposed to address these issues. One consists of using
a “less aggressive” objective function than the exponential function of AdaBoost,
such as the logistic loss, to penalize less incorrectly classified points. Another
solution is based on a regularization, e.g., an L1-regularization, which consists of
adding a term to the objective function to penalize larger weights. This could be
viewed as a soft margin approach for boosting. However, recent theoretical results
show that boosting algorithms based on convex potentials do not tolerate even low
levels of random noise, even with L1-regularization or early stopping.

The behavior of AdaBoost in the presence of noise can be used, however, as a
useful feature for detecting outliers, that is, examples that are incorrectly labeled
or that are hard to classify. Examples with large weights after a certain number of
rounds of boosting can be identified as outliers.

6.5 Chapter notes

The question of whether a weak learning algorithm could be boosted to derive a
strong learning algorithm was first posed by Kearns and Valiant [1988, 1994], who
also gave a negative proof of this result for a distribution-dependent setting. The
first positive proof of this result in a distribution-independent setting was given by
Schapire [1990], and later by Freund [1990].

These early boosting algorithms, boosting by filtering [Schapire, 1990] or boosting
by majority [Freund, 1990, 1995] were not practical. The AdaBoost algorithm
introduced by Freund and Schapire [1997] solved several of these practical issues.
Freund and Schapire [1997] further gave a detailed presentation and analysis of the
algorithm including the bound on its empirical error, a VC-dimension analysis, and
its applications to multi-class classification and regression.

Early experiments with AdaBoost were carried out by Drucker, Schapire, and
Simard [1993], who gave the first implementation in OCR with weak learners based
on neural networks and Drucker and Cortes [1995], who reported the empirical
performance of AdaBoost combined with decision trees, in particular decision
stumps.

The fact that AdaBoost coincides with coordinate descent applied to an expo-
nential objective function was later shown by Duffy and Helmbold [1999], Mason
et al. [1999], and Friedman [2000]. Friedman, Hastie, and Tibshirani [2000] also
gave an interpretation of boosting in terms of additive models. They also pointed
out the close connections between AdaBoost and logistic regression, in particular
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the fact that their objective functions have a similar behavior near zero or the
fact that their expectation admit the same minimizer, and derived an alternative
boosting algorithm, LogitBoost, based on the logistic loss. Lafferty [1999] showed
how an incremental family of algorithms, including LogitBoost, can be derived from
Bregman divergences and designed to closely approximate AdaBoost when varying
a parameter. Kivinen and Warmuth [1999] observed that boosting can be viewed
as a type of entropy projection. Collins, Schapire, and Singer [2002] later showed
that boosting and logistic regression were special instances of a common framework
based on Bregman divergences and used that to give the first convergence proof
of AdaBoost. Probably the most direct relationship between AdaBoost and logis-
tic regression is the proof by Lebanon and Lafferty [2001] that the two algorithms
minimize the same extended relative entropy objective function subject to the same
feature constraints, except from an additional normalization constraint for logistic
regression.

A margin-based analysis of AdaBoost was first presented by Schapire, Freund,
Bartlett, and Lee [1997], including theorem 6.3 which gives a bound on the empirical
margin loss. Our presentation is based on the elegant derivation of margin bounds
by Koltchinskii and Panchenko [2002] using the notion of Rademacher complexity.
Rudin et al. [2004] gave an example showing that, in general, AdaBoost does not
maximize the L1-margin. Rätsch and Warmuth [2002] provided asymptotic lower
bounds for the margin achieved by AdaBoost under some conditions. The L1-margin
maximization based on a LP is due to Grove and Schuurmans [1998]. The game-
theoretic interpretation of boosting and the application of von Neumann’s minimax
theorem [von Neumann, 1928] in that context were pointed out by Freund and
Schapire [1996, 1999b]; see also Grove and Schuurmans [1998], Breiman [1999].

Dietterich [2000] provided extensive empirical evidence for the fact that noise can
severely damage the accuracy of AdaBoost. This has been reported by a number of
other authors since then. Rätsch, Onoda, and Müller [2001] suggested the use of a
soft margin for AdaBoost based on a regularization of the objective function and
pointed out its connections with SVMs. Long and Servedio [2010] recently showed
the failure of boosting algorithms based on convex potentials to tolerate random
noise, even with L1-regularization or early stopping.

There are several excellent surveys and tutorials related to boosting [Schapire,
2003, Meir and Rätsch, 2002, Meir and Rätsch, 2003].

6.6 Exercises

6.1 VC-dimension of the hypothesis set of AdaBoost.

Prove the upper bound on the VC-dimension of the hypothesis set FT of AdaBoost
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after T rounds of boosting, as stated in equation 6.11.

6.2 Alternative objective functions.

This problem studies boosting-type algorithms defined with objective functions
different from that of AdaBoost. We assume that the training data are given as
m labeled examples (x1, y1), . . . , (xm, ym) ∈ X × {−1, +1}. We further assume
that Φ is a strictly increasing convex and differentiable function over R such that:
∀x ≥ 0, Φ(x) ≥ 1 and ∀x < 0, Φ(x) > 0.

(a) Consider the loss function L(α) =
∑m

i=1 Φ(−yig(xi)) where g is a linear
combination of base classifiers, i.e., g =

∑T
t=1 αtht (as in AdaBoost). Derive a

new boosting algorithm using the objective function L. In particular, charac-
terize the best base classifier hu to select at each round of boosting if we use
coordinate descent.

(b) Consider the following functions: (1) zero-one loss Φ1(−u) = 1u≤0; (2) least
squared loss Φ2(−u) = (1−u)2; (3) SVM loss Φ3(−u) = max{0, 1−u}; and (4)
logistic loss Φ4(−u) = log(1 + e−u). Which functions satisfy the assumptions
on Φ stated earlier in this problem?

(c) For each loss function satisfying these assumptions, derive the correspond-
ing boosting algorithm. How do the algorithm(s) differ from AdaBoost?

6.3 Update guarantee. Assume that the main weak learner assumption of AdaBoost
holds. Let ht be the base learner selected at round t. Show that the base learner
ht+1 selected at round t + 1 must be different from ht.

6.4 Weighted instances. Let the training sample be S = ((x1, y1), . . . , (xm, ym)).
Suppose we wish to penalize differently errors made on xi versus xj . To do that, we
associate some non-negative importance weight wi to each point xi and define the
objective function F (α) =

∑m
i=1 wie

−yig(xi), where g =
∑T

t=1 αtht. Show that this
function is convex and differentiable and use it to derive a boosting-type algorithm.

6.5 Define the unnormalized correlation of two vectors x and x′ as the inner product
between these vectors. Prove that the distribution vector (Dt+1(1), . . . , Dt+1(m))
defined by AdaBoost and the vector of components yiht(xi) are uncorrelated.

6.6 Fix ε ∈ (0, 1/2). Let the training sample be defined by m points in the plane
with m

4 negative points all at coordinate (1, 1), another m
4 negative points all at

coordinate (−1,−1), m(1−ε)
4 positive points all at coordinate (1,−1), and m(1+ε)

4

positive points all at coordinate (−1, +1). Describe the behavior of AdaBoost when
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run on this sample using boosting stumps. What solution does the algorithm return
after T rounds?

6.7 Noise-tolerant AdaBoost. AdaBoost may significantly overfitting in the presence
of noise, in part due to the high penalization of misclassified examples. To reduce
this effect, one could use instead the following objective function:

F =
m∑

i=1

G(−yig(xi)), (6.29)

where G is the function defined on R by

G(x) =

{
ex if x ≤ 0

x + 1 otherwise.
(6.30)

(a) Show that the function G is convex and differentiable.

(b) Use F and greedy coordinate descent to derive an algorithm similar to
AdaBoost.

(c) Compare the reduction of the empirical error rate of this algorithm with
that of AdaBoost.

6.8 Simplified AdaBoost. Suppose we simplify AdaBoost by setting the parameter
αt to a fixed value αt = α > 0, independent of the boosting round t.

(a) Let γ be such that (1
2 − εt) ≥ γ > 0. Find the best value of α as a function

of γ by analyzing the empirical error.

(b) For this value of α, does the algorithm assign the same probability mass
to correctly classified and misclassified examples at each round? If not, which
set is assigned a higher probability mass?

(c) Using the previous value of α, give a bound on the empirical error of the
algorithm that depends only on γ and the number of rounds of boosting T .

(d) Using the previous bound, show that for T > log m
2γ2 , the resulting hypothesis

is consistent with the sample of size m.

(e) Let s be the VC-dimension of the base learners used. Give a bound on the
generalization error of the consistent hypothesis obtained after T =

⌊
log m
2γ2

⌋
+1

rounds of boosting. (Hint : Use the fact that the VC-dimension of the family
of functions {sgn(

∑T
t=1 αtht) : αt ∈ R} is bounded by 2(s + 1)T log2(eT )).

Suppose now that γ varies with m. Based on the bound derived, what can be
said if γ(m) = O(

√
log m

m )?)
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Matrix-based AdaBoost(M, tmax)

1 λ1,j ← 0 for i = 1, . . . ,m

2 for t ← 1 to tmax do

3 dt,i ← exp(−(Mλt)i)Pm
k=1 exp(−(Mλt)k) for i = 1, . . . ,m

4 jt ← argmaxj(d�
t M)j

5 rt ← (d�
t M)jt

6 αt ← 1
2 log

(
1+rt

1−rt

)
7 λt+1 ← λt + αtejt, where ejt is 1 in position jt and 0 elsewhere.

8 return λtmax
‖λtmax‖1

Figure 6.7 Matrix-based AdaBoost.

6.9 Matrix-based AdaBoost.

(a) Define an m×n matrix M where Mij = yihj(xi), i.e., Mij = +1 if training
example i is classified correctly by weak classifier hj , and −1 otherwise. Let
dt, λt ∈ R

n, ‖dt‖1 = 1 and dt,i (respectively λt,i) equal the ith component of dt

(respectively λt). Now, consider the matrix-based form of AdaBoost described
in figure 6.7 and define M as below with eight training points and eight weak
classifiers.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 1 1 −1 −1 1

−1 1 1 −1 −1 1 1 1

1 −1 1 1 1 −1 1 1

1 −1 1 1 −1 1 1 1

1 −1 1 −1 1 1 1 −1

1 1 −1 1 1 1 1 −1

1 1 −1 1 1 1 −1 1

1 1 1 1 −1 −1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Assume that we start with the following initial distribution over the datapoints:

d1 =
(

3 − √
5

8
,
3 − √

5
8

,
1
6
,
1
6
,
1
6
,

√
5 − 1
8

,

√
5 − 1
8

, 0
)�

Compute the first few steps of the matrix-based AdaBoost algorithm using M,
d1, and tmax = 7. What weak classifier is picked at each round of boosting?



146 Boosting

Do you notice any pattern?

(b) What is the L1 norm margin produced by AdaBoost for this example?

(c) Instead of using AdaBoost, imagine we combined our classifiers using the
following coefficients: [2, 3, 4, 1, 2, 2, 1, 1] × 1

16 . What is the margin in this case?
Does AdaBoost maximize the margin?
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This chapter presents an introduction to on-line learning, an important area with a
rich literature and multiple connections with game theory and optimization that
is increasingly influencing the theoretical and algorithmic advances in machine
learning. In addition to the intriguing novel learning theory questions that they
raise, on-line learning algorithms are particularly attractive in modern applications
since they form an attractive solution for large-scale problems.

These algorithms process one sample at a time and can thus be significantly
more efficient both in time and space and more practical than batch algorithms,
when processing modern data sets of several million or billion points. They are
also typically easy to implement. Moreover, on-line algorithms do not require any
distributional assumption; their analysis assumes an adversarial scenario. This
makes them applicable in a variety of scenarios where the sample points are not
drawn i.i.d. or according to a fixed distribution.

We first introduce the general scenario of on-line learning, then present and
analyze several key algorithms for on-line learning with expert advice, including
the deterministic and randomized weighted majority algorithms for the zero-one
loss and an extension of these algorithms for convex losses. We also describe and
analyze two standard on-line algorithms for linear classifications, the Perceptron and
Winnow algorithms, as well as some extensions. While on-line learning algorithms
are designed for an adversarial scenario, they can be used, under some assumptions,
to derive accurate predictors for a distributional scenario. We derive learning
guarantees for this on-line to batch conversion. Finally, we briefly point out the
connection of on-line learning with game theory by describing their use to derive a
simple proof of von Neumann’s minimax theorem.

7.1 Introduction

The learning framework for on-line algorithms is in stark contrast to the PAC
learning or stochastic models discussed up to this point. First, instead of learning
from a training set and then testing on a test set, the on-line learning scenario mixes
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the training and test phases. Second, PAC learning follows the key assumption
that the distribution over data points is fixed over time, both for training and test
points, and that points are sampled in an i.i.d. fashion. Under this assumption, the
natural goal is to learn a hypothesis with a small expected loss or generalization
error. In contrast, with on-line learning, no distributional assumption is made,
and thus there is no notion of generalization. Instead, the performance of on-line
learning algorithms is measured using a mistake model and the notion of regret . To
derive guarantees in this model, theoretical analyses are based on a worst-case or
adversarial assumption.

The general on-line setting involves T rounds. At the tth round, the algorithm
receives an instance xt ∈ X and makes a prediction ŷt ∈ Y. It then receives the true
label yt ∈ Y and incurs a loss L(ŷt, yt), where L : Y × Y → R+ is a loss function.
More generally, the prediction domain for the algorithm may be Y ′ �= Y and the loss
function defined over Y ′ × Y. For classification problems, we often have Y = {0, 1}
and L(y, y′) = |y′ −y|, while for regression Y ⊆ R and typically L(y, y′) = (y′ −y)2.
The objective in the on-line setting is to minimize the cumulative loss:

∑T
t=1 L(ŷt, yt)

over T rounds.

7.2 Prediction with expert advice

We first discuss the setting of online learning with expert advice, and the associated
notion of regret . In this setting, at the tth round, in addition to receiving xt ∈ X ,
the algorithm also receives advice yt,i ∈ Y , i ∈ [1, N ], from N experts. Following
the general framework of on-line algorithms, it then makes a prediction, receives
the true label, and incurs a loss. After T rounds, the algorithm has incurred a
cumulative loss. The objective in this setting is to minimize the regret RT , also
called external regret , which compares the cumulative loss of the algorithm to that
of the best expert in hindsight after T rounds:

RT =
T∑

t=1

L(ŷt, yt) −
N

min
i=1

T∑
t=1

L(ŷt,i, yt). (7.1)

This problem arises in a variety of different domains and applications. Figure 7.1
illustrates the problem of predicting the weather using several forecasting sources
as experts.

7.2.1 Mistake bounds and Halving algorithm

Here, we assume that the loss function is the standard zero-one loss used in
classification. To analyze the expert advice setting, we first consider the realizable
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wunderground.com bbc.com weather.com cnn.com

?
algorithmbb

Figure 7.1 Weather forecast: an example of a prediction problem based on expert
advice.

case. As such, we discuss the mistake bound model , which asks the simple question
“How many mistakes before we learn a particular concept?” Since we are in the
realizable case, after some number of rounds T , we will learn the concept and no
longer make errors in subsequent rounds. For any fixed concept c, we define the
maximum number of mistakes a learning algorithm A makes as

MA(c) = max
x1,...,xT

|mistakes(A, c)|. (7.2)

Further, for any concept in a concept class C, the maximum number of mistakes a
learning algorithm makes is

MA(C) = max
c∈C

MA(c). (7.3)

Our goal in this setting is to derive mistake bounds, that is, a bound M on MA(C).
We will first do this for the Halving algorithm, an elegant and simple algorithm for
which we can generate surprisingly favorable mistake bounds. At each round, the
Halving algorithm makes its prediction by taking the majority vote over all active
experts. After any incorrect prediction, it deactivates all experts that gave faulty
advice. Initially, all experts are active, and by the time the algorithm has converged
to the correct concept, the active set contains only those experts that are consistent
with the target concept. The pseudocode for this algorithm is shown in figure 7.2.
We also present straightforward mistake bounds in theorems 7.1 and 7.2, where
the former deals with finite hypothesis sets and the latter relates mistake bounds to
VC-dimension. Note that the hypothesis complexity term in theorem 7.1 is identical
to the corresponding complexity term in the PAC model bound of theorem 2.1.

Theorem 7.1

Let H be a finite hypothesis set. Then

MHalving(H) ≤ log2 |H|. (7.4)

Proof Since the algorithm makes predictions using majority vote from the active
set, at each mistake, the active set is reduced by at least half. Hence, after log2 |H|
mistakes, there can only remain one active hypothesis, and since we are in the
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Halving(H)

1 H1 ← H

2 for t ← 1 to T do

3 Receive(xt)

4 ŷt ← MajorityVote(Ht, xt)

5 Receive(yt)

6 if (ŷt �= yt) then

7 Ht+1 ← {c ∈ Ht : c(xt) = yt}
8 return HT+1

Figure 7.2 Halving algorithm.

realizable case, this hypothesis must coincide with the target concept.

Theorem 7.2

Let opt(H) be the optimal mistake boundfor H. Then,

VCdim(H) ≤ opt(H) ≤ MHalving(H) ≤ log2 |H|. (7.5)

Proof The second inequality is true by definition and the third inequality holds
based on theorem 7.1. To prove the first inequality, we let d = VCdim(H). Then
there exists a shattered set of d points, for which we can form a complete binary tree
of the mistakes with height d, and we can choose labels at each round of learning to
ensure that d mistakes are made. Note that this adversarial argument is valid since
the on-line setting makes no statistical assumptions about the data.

7.2.2 Weighted majority algorithm

In the previous section, we focused on the realizable setting in which the Halving
algorithm simply discarded experts after a single mistake. We now move to the
non-realizable setting and use a more general and less extreme algorithm, the
Weighted Majority (WM) algorithm, that weights the importance of experts as
a function of their mistake rate. The WM algorithm begins with uniform weights
over all N experts. At each round, it generates predictions using a weighted majority
vote. After receiving the true label, the algorithm then reduces the weight of each
incorrect expert by a factor of β ∈ [0, 1). Note that this algorithm reduces to the
Halving algorithm when β = 0. The pseudocode for the WM algorithm is shown in
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Weighted-Majority(N)

1 for i ← 1 to N do

2 w1,i ← 1

3 for t ← 1 to T do

4 Receive(xt)

5 if
∑

i : yt,i=1 wt,i ≥∑
i : yt,i=0 wt,i then

6 ŷt ← 1

7 else ŷt ← 0

8 Receive(yt)

9 if (ŷt �= yt) then

10 for i ← 1 to N do

11 if (yt,i �= yt) then

12 wt+1,i ← βwt,i

13 else wt+1,i ← wt,i

14 return wT+1

Figure 7.3 Weighted majority algorithm, yt, yt,i ∈ {0, 1}.

figure 7.3.
Since we are not in the realizable setting, the mistake bounds of theorem 7.1

cannot apply. However, the following theorem presents a bound on the number of
mistakes mT made by the WM algorithm after T ≥ 1 rounds of on-line learning as
a function of the number of mistakes made by the best expert, that is the expert
who achieves the smallest number of mistakes for the sequence y1, . . . , yT . Let us
emphasize that this is the best expert in hindsight.

Theorem 7.3

Fix β ∈ (0, 1). Let mT be the number of mistakes made by algorithm WM after T ≥ 1
rounds, and m∗

T be the number of mistakes made by the best of the N experts. Then,
the following inequality holds:

mT ≤
log N + m∗

T log 1
β

log 2
1+β

. (7.6)

Proof To prove this theorem, we first introduce a potential function. We then
derive upper and lower bounds for this function, and combine them to obtain our
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result. This potential function method is a general proof technique that we will use
throughout this chapter.

For any t ≥ 1, we define our potential function as Wt =
∑N

i=1 wt,i. Since
predictions are generated using weighted majority vote, if the algorithm makes
an error at round t, this implies that

Wt+1 ≤ [
1/2 + (1/2)β

]
Wt =

[
1 + β

2

]
Wt. (7.7)

Since W1 = N and mT mistakes are made after T rounds, we thus have the following
upper bound:

WT ≤
[
1 + β

2

]mT

N. (7.8)

Next, since the weights are all non-negative, it is clear that for any expert i,
WT ≥ wT,i = βmT,i , where mT,i is the number of mistakes made by the ith expert
after T rounds. Applying this lower bound to the best expert and combining it with
the upper bound in (7.8) gives us:

βm∗
T ≤ WT ≤

[
1 + β

2

]mT

N

⇒ m∗
T log β ≤ log N + mT log

[
1 + β

2

]
⇒ mT log

[
2

1 + β

]
≤ log N + m∗

T log
1
β

,

which concludes the proof.

Thus, the theorem guarantees a bound of the following form for algorithm WM:

mT ≤ O(log N) + constant × |mistakes of best expert|.

Since the first term varies only logarithmically as a function of N , the theorem
guarantees that the number of mistakes is roughly a constant times that of the best
expert in hindsight. This is a remarkable result, especially because it requires no
assumption about the sequence of points and labels generated. In particular, the
sequence could be chosen adversarially. In the realizable case where m∗

T = 0, the
bound reduces to mT ≤ O(log N) as for the Halving algorithm.

7.2.3 Randomized weighted majority algorithm

In spite of the guarantees just discussed, the WM algorithm admits a drawback that
affects all deterministic algorithms in the case of the zero-one loss: no deterministic
algorithm can achieve a regret RT = o(T ) over all sequences. Clearly, for any
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Randomized-Weighted-Majority (N)

1 for i ← 1 to N do

2 w1,i ← 1

3 p1,i ← 1/N

4 for t ← 1 to T do

5 for i ← 1 to N do

6 if (lt,i = 1) then

7 wt+1,i ← βwt,i

8 else wt+1,i ← wt,i

9 Wt+1 ←∑N
i=1 wt+1,i

10 for i ← 1 to N do

11 pt+1,i ← wt+1,i/Wt+1

12 return wT+1

Figure 7.4 Randomized weighted majority algorithm.

deterministic algorithm A and any t ∈ [1, T ], we can adversarially select yt to
be 1 if the algorithm predicts 0, and choose it to be 0 otherwise. Thus, A errs at
every point of such a sequence and its cumulative mistake is mT = T . Assume for
example that N = 2 and that one expert always predicts 0, the other one always 1.
The error of the best expert over that sequence (and in fact any sequence of that
length) is then at most m∗

T ≤ T/2. Thus, for that sequence, we have

RT = mT − m∗
T ≥ T/2,

which shows that RT = o(T ) cannot be achieved in general. Note that this does
not contradict the bound proven in the previous section, since for any β ∈ (0, 1),

log 1
β

log 2
1+β

≥ 2. As we shall see in the next section, this negative result does not hold
for any loss that is convex with respect to one of its arguments. But for the zero-one
loss, this leads us to consider randomized algorithms instead.

In the randomized scenario of on-line learning, we assume that a set A =
{1, . . . , N} of N actions is available. At each round t ∈ [1, T ], an on-line algorithm
A selects a distribution pt over the set of actions, receives a loss vector lt, whose ith
component lt,i ∈ [0, 1] is the loss associated with action i, and incurs the expected
loss Lt =

∑N
i=1 pt,i lt,i. The total loss incurred by the algorithm over T rounds

is LT =
∑T

t=1 Lt. The total loss associated to action i is LT,i =
∑T

t=1 lt,i. The
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minimal loss of a single action is denoted by Lmin
T = mini∈A LT,i. The regret RT of

the algorithm after T rounds is then typically defined by the difference of the loss
of the algorithm and that of the best single action:1

RT = LT − Lmin
T .

Here, we consider specifically the case of zero-one losses and assume that lt,i ∈ {0, 1}
for all t ∈ [1, T ] and i ∈ A.

The WM algorithm admits a straightforward randomized version, the randomized
weighted majority (RWM) algorithm. The pseudocode of this algorithm is given in
figure 7.4. The algorithm updates the weight wt,i of expert i as in the case of the WM
algorithm by multiplying it by β. The following theorem gives a strong guarantee
on the regret RT of the RWM algorithm, showing that it is in O(

√
T log N).

Theorem 7.4

Fix β ∈ [1/2, 1). Then, for any T ≥ 1, the loss of algorithm RWM on any sequence
can be bounded as follows:

LT ≤ log N

1 − β
+ (2 − β)Lmin

T . (7.9)

In particular, for β = max{1/2, 1 −√(log N)/T}, the loss can be bounded as:

LT ≤ Lmin
T + 2

√
T log N. (7.10)

Proof As in the proof of theorem 7.3, we derive upper and lower bounds for the
potential function Wt =

∑N
i=1 wt,i, t ∈ [1, T ], and combine these bounds to obtain

the result. By definition of the algorithm, for any t ∈ [1, T ], Wt+1 can be expressed
as follows in terms of Wt:

Wt+1 =
∑

i : lt,i=0

wt,i + β
∑

i : lt.i=1

wt,i = Wt + (β − 1)
∑

i : lt,i=1

wt,i

= Wt + (β − 1)Wt

∑
i : lt,i=1

pt,i

= Wt + (β − 1)WtLt

= Wt(1 − (1 − β)Lt).

Thus, since W1 = N , it follows that WT+1 = N
∏T

t=1(1 − (1 − β)Lt). On the other
hand, the following lower bound clearly holds: WT+1 ≥ maxi∈[1,N ] wT+1,i = βLmin

T .
This leads to the following inequality and series of derivations after taking the log

1. Alternative definitions of the regret with comparison classes different from the set of
single actions can be considered.
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and using the inequalities log(1 − x) ≤ −x valid for all x < 1, and − log(1 − x) ≤
x + x2 valid for all x ∈ [0, 1/2]:

βLmin
T ≤ N

T∏
t=1

(1 − (1 − β)Lt) =⇒ Lmin
T log β ≤ log N +

T∑
t=1

log(1 − (1 − β)Lt)

=⇒ Lmin
T log β ≤ log N − (1 − β)

T∑
t=1

Lt

=⇒ Lmin
T log β ≤ log N − (1 − β)LT

=⇒ LT ≤ log N

1 − β
− log β

1 − β
Lmin

T

=⇒ LT ≤ log N

1 − β
− log(1 − (1 − β))

1 − β
Lmin

T

=⇒ LT ≤ log N

1 − β
+ (2 − β)Lmin

T .

This shows the first statement. Since Lmin
T ≤ T , this also implies

LT ≤ log N

1 − β
+ (1 − β)T + Lmin

T . (7.11)

Differentiating the upper bound with respect to β and setting it to zero gives
log N

(1−β)2 − T = 0, that is β = β0 = 1 − √
(log N)/T , since β < 1. Thus, if

1−√(log N)/T ≥ 1/2, β0 is the minimizing value of β, otherwise 1/2 is the optimal
value. The second statement follows by replacing β with β0 in (7.11).

The bound (7.10) assumes that the algorithm additionally receives as a parameter
the number of rounds T . As we shall see in the next section, however, there exists
a general doubling trick that can be used to relax this requirement at the price of
a small constant factor increase. Inequality 7.10 can be written directly in terms of
the regret RT of the RWM algorithm:

RT ≤ 2
√

T log N. (7.12)

Thus, for N constant, the regret verifies RT = O(
√

T ) and the average regret or
regret per round RT /T decreases as O(1/

√
T ). These results are optimal, as shown

by the following theorem.

Theorem 7.5

Let N = 2. There exists a stochastic sequence of losses for which the regret of any
on-line learning algorithm verifies E[RT ] ≥√

T/8.

Proof For any t ∈ [1, T ], let the vector of losses lt take the values l01 = (0, 1)�

and l10 = (1, 0)� with equal probability. Then, the expected loss of any randomized
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algorithm A is

E[LT ] = E
[ T∑

t=1

pt · lt
]

=
T∑

t=1

pt · E[lt] =
T∑

t=1

1
2
pt,1 +

1
2
(1 − pt,1) = T/2,

where we denoted by pt the distribution selected by A at round t. By definition,
Lmin

T can be written as follows:

Lmin
T = min{LT,1,LT,2} =

1
2
(LT,1 + LT,2 − |LT,1 − LT,2|) = T/2 − |LT,1 − T/2|,

using the fact that LT,1 + LT,2 = T . Thus, the expected regret of A is

E[RT ] = E[LT ] − E[Lmin
T ] = E[|LT,1 − T/2|].

Let σt, t ∈ [1, T ], denote Rademacher variables taking values in {−1, +1}, then
LT,1 can be rewritten as LT,1 =

∑T
t=1

1+σt

2 = T/2 + 1
2

∑T
t=1 σt. Thus, introducing

scalars xt = 1/2, t ∈ [1, T ], by the Khintchine-Kahane inequality (D.22), we have:

E[RT ] = E
[
|

T∑
t=1

σtxt|
]
≥
√√√√1

2

T∑
t=1

x2
t =

√
T/8,

which concludes the proof.

More generally, for T ≥ N , a lower bound of RT = Ω(
√

T log N) can be proven for
the regret of any algorithm.

7.2.4 Exponential weighted average algorithm

The WM algorithm can be extended to other loss functions L taking values in
[0, 1]. The Exponential Weighted Average algorithm presented here can be viewed
as that extension for the case where L is convex in its first argument. Note that this
algorithm is deterministic and yet, as we shall see, admits a very favorable regret
guarantee. Figure 7.5 gives its pseudocode. At round t ∈ [1, T ], the algorithm’s
prediction is

ŷt =
∑N

i=1 wt,iyt,i∑N
i=1 wt,i

, (7.13)

where yt,i is the prediction by expert i and wt,i the weight assigned by the algorithm
to that expert. Initially, all weights are set to one. The algorithm then updates the
weights at the end of round t according to the following rule:

wt+1,i ← wt,i e−ηL(byt,i,yt) = e−ηLt,i , (7.14)
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Exponential-Weighted-Average (N)

1 for i ← 1 to N do

2 w1,i ← 1

3 for t ← 1 to T do

4 Receive(xt)

5 ŷt ←
PN

i=1 wt,iyt,iPN
i=1 wt,i

6 Receive(yt)

7 for i ← 1 to N do

8 wt+1,i ← wt,i e−ηL(byt,i,yt)

9 return wT+1

Figure 7.5 Exponential weighted average, L(byt,i, yt) ∈ [0, 1].

where Lt,i is the total loss incurred by expert i after t rounds. Note that this
algorithm, as well as the others presented in this chapter, are simple, since they
do not require keeping track of the losses incurred by each expert at all previous
rounds but only of their cumulative performance. Furthermore, this property is also
computationally advantageous. The following theorem presents a regret bound for
this algorithm.

Theorem 7.6

Assume that the loss function L is convex in its first argument and takes values
in [0, 1]. Then, for any η > 0 and any sequence y1, . . . , yT ∈ Y , the regret of the
Exponential Weighted Average algorithm after T rounds satisfies

RT ≤ log N

η
+

ηT

8
. (7.15)

In particular, for η =
√

8 log N/T , the regret is bounded as

RT ≤
√

(T/2) log N. (7.16)

Proof We apply the same potential function analysis as in previous proofs but
using as potential Φt = log

∑N
i=1 wt,i, t ∈ [1, T ]. Let pt denote the distribution over

{1, . . . , N} with pt,i = wt,iPN
i=1 wt,i

. To derive an upper bound on Φt, we first examine
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the difference of two consecutive potential values:

Φt+1 − Φt = log
∑N

i=1 wt,i e−ηL(byt,i,yt)∑N
i=1 wt,i

= log
(

E
pt

[eηX ]
)
,

with X = −L(ŷt,i, yt) ∈ [−1, 0]. To upper bound the expression appearing in the
right-hand side, we apply Hoeffding’s lemma (lemma D.1) to the centered random
variable X − Ept [X], then Jensen’s inequality (theorem B.4) using the convexity of
L with respect to its first argument:

Φt+1 − Φt = log
(

E
pt

[
eη(X−E[X])+η E[X]

])
≤ η2

8
+ η E

pt

[X] =
η2

8
− η E

pt

[L(ŷt,i, yt)] (Hoeffding’s lemma)

≤ −ηL
(

E
pt

[ŷt,i], yt

)
+

η2

8
(convexity of first arg. of L)

= −ηL(ŷt, yt) +
η2

8
.

Summing up these inequalities yields the following upper bound:

ΦT+1 − Φ1 ≤ −η

T∑
t=1

L(ŷt, yt) +
η2T

8
. (7.17)

We obtain a lower bound for the same quantity as follows:

ΦT+1−Φ1 = log
N∑

i=1

e−ηLT,i−log N ≥ log
N

max
i=1

e−ηLT,i−log N = −η
N

min
i=1

LT,i−log N.

Combining the upper and lower bounds yields:

− η
N

min
i=1

LT,i − log N ≤ −η

T∑
t=1

L(ŷt, yt) +
η2T

8

=⇒
T∑

t=1

L(ŷt, yt) −
N

min
i=1

LT,i ≤ log N

η
+

ηT

8
,

and concludes the proof.

The optimal choice of η in theorem 7.6 requires knowledge of the horizon T , which is
an apparent disadvantage of this analysis. However, we can use a standard doubling
trick to eliminate this requirement, at the price of a small constant factor. This
consists of dividing time into periods [2k, 2k+1 − 1] of length 2k with k = 0, . . . , n

and T ≥ 2n−1, and then choose ηk =
√

8 log N
2k in each period. The following theorem

presents a regret bound when using the doubling trick to select η. A more general
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method consists of interpreting η as a function of time, i.e., ηt =
√

(8 log N)/t,
which can lead to a further constant factor improvement over the regret bound of
the following theorem.

Theorem 7.7

Assume that the loss function L is convex in its first argument and takes values
in [0, 1]. Then, for any T ≥ 1 and any sequence y1, . . . , yT ∈ Y , the regret of the
Exponential Weighted Average algorithm after T rounds is bounded as follows:

RT ≤
√

2√
2 − 1

√
(T/2) log N +

√
log N/2. (7.18)

Proof Let T ≥ 1 and let Ik = [2k, 2k+1 − 1], for k ∈ [0, n], with n = (log(T + 1)).
Let LIk

denote the loss incurred in the interval Ik. By theorem 7.6 (7.16), for any
k ∈ [0, n], we have

LIk
−

N
min
i=1

LIk,i ≤
√

2k/2 log N. (7.19)

Thus, we can bound the total loss incurred by the algorithm after T rounds as:

LT =
n∑

k=0

LIk
≤

n∑
k=0

N
min
i=1

LIk,i +
n∑

k=0

√
2k (log N)/2

≤
N

min
i=1

LT,i +
√

(log N)/2 ·
n∑

k=0

2
k
2 , (7.20)

where the second inequality follows from the super-additivity of min, that is
mini Xi + mini Yi ≤ mini(Xi + Yi) for any sequences (Xi)i and (Yi)i, which implies∑n

k=0 minN
i=1 LIk,i ≤ minN

i=1

∑n
k=0 LIk,i. The geometric sum appearing in the right-

hand side of (7.20) can be expressed as follows:

n∑
k=0

2
k
2 =

2(n+1)/2 − 1√
2 − 1

≤
√

2
√

T + 1 − 1√
2 − 1

≤
√

2(
√

T + 1) − 1√
2 − 1

=
√

2
√

T√
2 − 1

+ 1.

Plugging back into (7.20) and rearranging terms yields (7.18).

The O(
√

T ) dependency on T presented in this bound cannot be improved for
general loss functions.

7.3 Linear classification

This section presents two well-known on-line learning algorithms for linear classifi-
cation: the Perceptron and Winnow algorithms.
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Perceptron(w0)

1 w1 ← w0 � typically w0 = 0

2 for t ← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(wt · xt)

5 Receive(yt)

6 if (ŷt �= yt) then

7 wt+1 ← wt + ytxt � more generally ηytxt, η > 0.

8 else wt+1 ← wt

9 return wT+1

Figure 7.6 Perceptron algorithm.

7.3.1 Perceptron algorithm

The Perceptron algorithm is one of the earliest machine learning algorithms. It is
an on-line linear classification algorithm. Thus, it learns a decision function based
on a hyperplane by processing training points one at a time. Figure 7.6 gives its
pseudocode.

The algorithm maintains a weight vector wt ∈ R
N defining the hyperplane

learned, starting with an arbitrary vector w0. At each round t ∈ [1, T ], it predicts
the label of the point xt ∈ R

N received, using the current vector wt (line 4). When
the prediction made does not match the correct label (lines 6-7), it updates wt by
adding ytxt. More generally, when a learning rate η > 0 is used, the vector added
is ηytxt. This update can be partially motivated by examining the inner product of
the current weight vector with ytxt, whose sign determines the classification of xt.
Just before an update, xt is misclassified and thus ytwt · xt is negative; afterward,
ytwt+1 ·xt = ytwt ·ytxt +η‖xt‖2, thus, the update corrects the weight vector in the
direction of making the inner product positive by augmenting it with this quantity
with η‖xt‖2 > 0.

The Perceptron algorithm can be shown in fact to seek a weight vector w
minimizing an objective function F precisely based on the quantities (−ytw · xt),
t ∈ [1, T ]. Since (−ytw · xt) is positive when xt is misclassified by w, F is defined
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w1

w2

w3w4

w5

Figure 7.7 An example path followed by the iterative stochastic gradient descent
technique. Each inner contour indicates a region of lower elevation.

for all w ∈ R
N by

F (w) =
1
T

T∑
t=1

max
(
0,−yt(w · xt)

)
= E

x∼ bD
[F̃ (w,x)], (7.21)

where F̃ (w,x) = max
(
0,−f(x)(w · x)

)
with f(x) denoting the label of x, and

D̂ is the empirical distribution associated with the sample (x1, . . . ,xT ). For any
t ∈ [1, T ], w �→ −yt(w · xt) is linear and thus convex. Since the max operator pre-
serves convexity, this shows that F is convex. However, F is not differentiable. Nev-
ertheless, the Perceptron algorithm coincides with the application of the stochastic
gradient descent technique to F .

The stochastic (or on-line) gradient descent technique examines one point xt at
a time. For a function F̃ , a generalized version of this technique can be defined by
the execution of the following update for each point xt:

wt+1 ←
{

wt − η∇wF̃ (wt,xt) if w �→ F̃ (w,xt) differentiable at wt,

wt otherwise,
(7.22)

where η > 0 is a learning rate parameter. Figure 7.7 illustrates an example path
the gradient descent follows. In the specific case we are considering, w �→ F̃ (w,xt)
is differentiable at any w such that yt(w · xt) �= 0 with ∇wF̃ (w,xt) = −yxt if
yt(w · xt) < 0 and ∇wF̃ (w,xt) = 0 if yt(w · xt) > 0. Thus, the stochastic gradient
descent update becomes

wt+1 ←

⎧⎪⎪⎨⎪⎪⎩
wt + ηytxt if yt(w · xt) < 0;

wt if yt(w · xt) > 0;

wt otherwise,

(7.23)

which coincides exactly with the update of the Perceptron algorithm.
The following theorem gives a margin-based upper bound on the number of

mistakes or updates made by the Perceptron algorithm when processing a sequence
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of T points that can be linearly separated by a hyperplane with margin ρ > 0.

Theorem 7.8

Let x1, . . . ,xT ∈ R
N be a sequence of T points with ‖xt‖ ≤ r for all t ∈ [1, T ], for

some r > 0. Assume that there exist ρ > 0 and v ∈ R
N such that for all t ∈ [1, T ],

ρ ≤ yt(v·xt)
‖v‖ . Then, the number of updates made by the Perceptron algorithm when

processing x1, . . . ,xT is bounded by r2/ρ2.

Proof Let I be the subset of the T rounds at which there is an update, and let
M be the total number of updates, i.e., |I| = M . Summing up the assumption
inequalities yields:

Mρ ≤ v ·∑t∈I ytxt

‖v‖ ≤
∥∥∥∑

t∈I

ytxt

∥∥∥ (Cauchy-Schwarz inequality )

=
∥∥∥∑

t∈I

(wt+1 − wt)
∥∥∥ (definition of updates)

= ‖wT+1‖ (telescoping sum, w0 = 0)

=
√∑

t∈I

‖wt+1‖2 − ‖wt‖2 (telescoping sum, w0 = 0)

=
√∑

t∈I

‖wt + ytxt‖2 − ‖wt‖2 (definition of updates)

=
√√√√∑

t∈I

2 ytwt · xt︸ ︷︷ ︸
≤0

+‖xt‖2

≤
√∑

t∈I

‖xt‖2 ≤
√

Mr2.

Comparing the left- and right-hand sides gives
√

M ≤ r/ρ, that is, M ≤ r2/ρ2.

By definition of the algorithm, the weight vector wT after processing T points is a
linear combination of the vectors xt at which an update was made: wT =

∑
t∈I ytxt.

Thus, as in the case of SVMs, these vectors can be referred to as support vectors
for the Perceptron algorithm.

The bound of theorem 7.8 is remarkable, since it depends only on the normalized
margin ρ/r and not on the dimension N of the space. This bound can be shown
to be tight, that is the number of updates can be equal to r2/ρ2 in some instances
(see exercise 7.3 to show the upper bound is tight).

The theorem required no assumption about the sequence of points x1, . . . ,xT .
A standard setting for the application of the Perceptron algorithm is one where a
finite sample S of size m < T is available and where the algorithm makes multiple
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passes over these m points. The result of the theorem implies that when S is linearly
separable, the Perceptron algorithm converges after a finite number of updates and
thus passes. For a small margin ρ, the convergence of the algorithm can be quite
slow, however. In fact, for some samples, regardless of the order in which the points
in S are processed, the number of updates made by the algorithm is in Ω(2N ) (see
exercise 7.1). Of course, if S is not linearly separable, the Perceptron algorithm does
not converge. In practice, it is stopped after some number of passes over S.

There are many variants of the standard Perceptron algorithm which are used
in practice and have been theoretically analyzed. One notable example is the voted
Perceptron algorithm, which predicts according to the rule sgn

(
(
∑

t∈I ctwt) · x),
where ct is a weight proportional to the number of iterations that wt survives, i.e.,
the number of iterations between wt and wt+1.

For the following theorem, we consider the case where the Perceptron algorithm
is trained via multiple passes till convergence over a finite sample that is linearly
separable. In view of theorem 7.8, convergence occurs after a finite number of
updates.

For a linearly separable sample S, we denote by rS the radius of the smallest
sphere containing all points in S and by ρS the largest margin of a separating
hyperplane for S. We also denote by M(S) the number of updates made by the
algorithm after training over S.

Theorem 7.9

Assume that the data is linearly separable. Let hS be the hypothesis returned by the
Perceptron algorithm after training over a sample S of size m drawn according to
some distribution D. Then, the expected error of hS is bounded as follows:

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[
min

(
M(S), r2

S/ρ2
S

)
m + 1

]
.

Proof Let S be a linearly separable sample of size m + 1 drawn i.i.d. according
to D and let x be a point in S. If hS−{x} misclassifies x, then x must be a support
vector for hS . Thus, the leave-one-out error of the Perceptron algorithm on sample
S is at most M(S)

m+1 . The result then follows lemma 4.1, which relates the expected
leave-one-out error to the expected error, along with the upper bound on M(S)
given by theorem 7.8.

This result can be compared with a similar one given for the SVM algorithm (with
no offset) in the following theorem, which is an extension of theorem 4.1. We denote
by NSV(S) the number of support vectors that define the hypothesis hS returned
by SVMs when trained on a sample S.
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Theorem 7.10

Assume that the data is linearly separable. Let hS be the hypothesis returned by
SVMs used with no offset (b = 0) after training over a sample S of size m drawn
according to some distribution D. Then, the expected error of hS is bounded as
follows:

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[
min

(
NSV(S), r2

S/ρ2
S

)
m + 1

]
.

Proof The fact that the expected error can be upper bounded by the average
fraction of support vectors (NSV(S)/(m + 1)) was already shown by theorem 4.1.
Thus, it suffices to show that it is also upper bounded by the expected value of
(r2

S/ρ2
S)/(m + 1). To do so, we will bound the leave-one-out error of the SVM

algorithm for a sample S of size m + 1 by (r2
S/ρ2

S)/(m + 1). The result will then
follow by lemma 4.1, which relates the expected leave-one-out error to the expected
error.

Let S = (x1, . . . ,xm+1) be a linearly separable sample drawn i.i.d. according to
D and let x be a point in S that is misclassified by hS−{x}. We will analyze the
case where x = xm+1, the analysis of other cases is similar. We denote by S′ the
sample (x1, . . . ,xm).

For any q ∈ [1,m + 1], let Gq denote the function defined over R
q by Gq : α �→∑q

i=1 αi − 1
2

∑q
i,j=1 αiαjyiyj(xi · xj). Then, Gm+1 is the objective function of the

dual optimization problem for SVMs associated to the sample S and Gm the one
for the sample S′. Let α ∈ R

m+1 denote a solution of the dual SVM problem
maxα≥0 Gm+1(α) and α′ ∈ R

m+1 the vector such that (α′
1, . . . , α

′
m)� ∈ R

m is a
solution of maxα≥0 Gm(α) and α′

m+1 = 0. Let em+1 denote the (m + 1)th unit
vector in R

m+1. By definition of α and α′ as maximizers, maxβ≥0 Gm+1(α′ +
βem+1) ≤ Gm+1(α) and Gm+1(α − αm+1em+1) ≤ Gm(α′). Thus, the quantity
A = Gm+1(α) − Gm(α′) admits the following lower and upper bounds:

max
β≥0

Gm+1(α′ + βem+1) − Gm(α′) ≤ A ≤ Gm+1(α) − Gm+1(α − αm+1em+1).

Let w =
∑m+1

i=1 yiαixi denote the weight vector returned by SVMs for the sample
S. Since hS′ misclassifies xm+1, xm+1 must be a support vector for hS , thus
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ym+1w · xm+1 = 1. In view of that, the upper bound can be rewritten as follows:

Gm+1(α) − Gm+1(α − αm+1em+1)

= αm+1 −
m+1∑
i=1

(yiαixi) · (ym+1αm+1xm+1) +
1
2
α2

m+1‖xm+1‖2

= αm+1(1 − ym+1w · xm+1) +
1
2
α2

m+1‖xm+1‖2

=
1
2
α2

m+1‖xm+1‖2.

Similarly, let w′ =
∑m

i=1 yiα
′
ixi. Then, for any β ≥ 0, the quantity maximized in

the lower bound can be written as

Gm+1(α′ + βem+1) − Gm(α′)

= β
(
1 − ym+1(w′ + βxm+1) · xm+1

)
+

1
2
β2‖xm+1‖2

= β(1 − ym+1w′ · xm+1) − 1
2
β2‖xm+1‖2.

The right-hand side is maximized for the following value of β: 1−ym+1w
′·xm+1

‖xm+1‖2 .

Plugging in this value in the right-hand side gives 1
2

(1−ym+1w
′·xm+1)

‖xm+1‖2 . Thus,

A ≥ 1
2

(1 − ym+1w′ · xm+1)
‖xm+1‖2

≥ 1
2‖xm+1‖2

,

using the fact that ym+1w′ ·xm+1 < 0, since xm+1 is misclassified by w′. Comparing
this lower bound on A with the upper bound previously derived leads to 1

2‖xm+1‖2 ≤
1
2α2

m+1‖xm+1‖2, that is

αm+1 ≥ 1
‖xm+1‖2

≥ 1
r2
S

.

The analysis carried out in the case x = xm+1 holds similarly for any xi in S that is
misclassified by hS−{xi}. Let I denote the set of such indices i. Then, we can write:∑

i∈I

αi ≥ |I|
r2
S

.

By (4.18), the following simple expression holds for the margin:
∑m+1

i=1 αi = 1/ρ2
S .

Using this identity leads to

|I| ≤ r2
S

∑
i∈I

αi ≤ r2
S

m+1∑
i=1

αi =
r2
S

ρ2
S

.
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Since by definition |I| is the total number of leave-one-out errors, this concludes the
proof.

Thus, the guarantees given by theorem 7.9 and theorem 7.10 in the separable
case have a similar form. These bounds do not seem sufficient to distinguish the
effectiveness of the SVM and Perceptron algorithms. Note, however, that while the
same margin quantity ρS appears in both bounds, the radius rS can be replaced by
a finer quantity that is different for the two algorithms: in both cases, instead of the
radius of the sphere containing all sample points, rS can be replaced by the radius
of the sphere containing the support vectors, as can be seen straightforwardly from
the proof of the theorems. Thus, the position of the support vectors in the case
of SVMs can provide a more favorable guarantee than that of the support vectors
(update vectors) for the Perceptron algorithm. Finally, the guarantees given by
these theorems are somewhat weak. These are not high probability bounds, they
hold only for the expected error of the hypotheses returned by the algorithms and
in particular provide no information about the variance of their error.

The following theorem presents a bound on the number of updates or mistakes
made by the Perceptron algorithm in the more general scenario of a non-linearly
separable sample.

Theorem 7.11

Let x1, . . . ,xT ∈ R
N be a sequence of T points with ‖xt‖ ≤ r for all t ∈ [1, T ], for

some r > 0. Let v ∈ R
N be any vector with ‖v‖ = 1 and let ρ > 0. Define the

deviation of xt by dt = max{0, ρ − yt(v · xt)}, and let δ =
√∑T

t=1 d2
t . Then, the

number of updates made by the Perceptron algorithm when processing x1, . . . ,xT is
bounded by (r + δ)2/ρ2.

Proof We first reduce the problem to the separable case by mapping each input
vector xt ∈ R

N to a vector in x′
t ∈ R

N+T as follows:

xt =

⎡⎢⎢⎣
xt,1

...

xt,N

⎤⎥⎥⎦ �→ x′
t =

⎡⎣xt,1 . . . xt,N 0 . . . 0 Δ︸︷︷︸
(N + t)th
component

0 . . . 0
⎤⎦�

,

where the first N components of x′
t are identical to those of x and the only other

non-zero component is the (N + t)th component and is equal to Δ. The value of
the parameter Δ will be set later. The vector v is replaced by the vector v′ defined
as follows:

v′ =
[
v1/Z . . . vN/Z y1d1/(ΔZ) . . . yT dT /(ΔZ)

]�
.

The first N components of v′ are equal to the components of v/Z and the remaining
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DualPerceptron(α0)

1 α ← α0 � typically α0 = 0

2 for t ← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(
∑T

s=1 αsys(xs · xt))

5 Receive(yt)

6 if (ŷt �= yt) then

7 αt+1 ← αt + 1

8 else αt+1 ← αt

9 return α

Figure 7.8 Dual Perceptron algorithm.

T components are functions of the labels and deviations. Z is chosen to guarantee
that ‖v′‖ = 1: Z =

√
1 + δ2

Δ2 . The predictions made by the Perceptron algorithm
for x′

t, t ∈ [1, T ] coincide with those made in the original space for xt, t ∈ [1, T ].
Furthermore, by definition of v′ and x′

t, we can write for any t ∈ [1, T ]:

yt(v′ · x′
t) = yt

(v · xt

Z
+ Δ

ytdt

ZΔ

)
=

ytv · xt

Z
+

dt

Z

≥ ytv · xt

Z
+

ρ − yt(v · xt)
Z

=
ρ

Z
,

where the inequality results from the definition of the deviation dt. This shows that
the sample formed by x′

1, . . . ,x
′
T is linearly separable with margin ρ/Z. Thus, in

view of theorem 7.8, since ||x′
t||2 ≤ r2 + Δ2, the number of updates made by the

Perceptron algorithm is bounded by (r2+Δ2)(1+δ2/Δ2)
ρ2 . Choosing Δ2 to minimize

this bound leads to Δ2 = rδ. Plugging in this value yields the statement of the
theorem.

The main idea behind the proof of the theorem just presented is to map input points
to a higher-dimensional space where linear separation is possible, which coincides
with the idea of kernel methods. In fact, the particular kernel used in the proof is
close to a straightforward one with a feature mapping that maps each data point
to a distinct dimension.

The Perceptron algorithm can in fact be generalized, as in the case of SVMs,
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KernelPerceptron(α0)

1 α ← α0 � typically α0 = 0

2 for t ← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(
∑T

s=1 αsysK(xs, xt))

5 Receive(yt)

6 if (ŷt �= yt) then

7 αt+1 ← αt + 1

8 else αt+1 ← αt

9 return α

Figure 7.9 Kernel Perceptron algorithm for PDS kernel K.

to define a linear separation in a high-dimensional space. It admits an equivalent
dual form, the dual Perceptron algorithm, which is presented in figure 7.8. The
dual Perceptron algorithm maintains a vector α ∈ R

T of coefficients assigned to
each point xt, t ∈ [1, T ]. The label of a point xt is predicted according to the rule
sgn(w ·xt), where w =

∑T
s=1 αsysxs. The coefficient αt is incremented by one when

this prediction does not match the correct label. Thus, an update for xt is equivalent
to augmenting the weight vector w with ytxt, which shows that the dual algorithm
matches exactly the standard Perceptron algorithm. The dual Perceptron algorithm
can be written solely in terms of inner products between training instances. Thus, as
in the case of SVMs, instead of the inner product between points in the input space,
an arbitrary PDS kernel can be used, which leads to the kernel Perceptron algorithm
detailed in figure 7.9. The kernel Perceptron algorithm and its average variant,
i.e., voted Perceptron with uniform weights ct, are commonly used algorithms in a
variety of applications.

7.3.2 Winnow algorithm

This section presents an alternative on-line linear classification algorithm, the
Winnow algorithm. Thus, it learns a weight vector defining a separating hyperplane
by sequentially processing the training points. As suggested by the name, the
algorithm is particularly well suited to cases where a relatively small number of
dimensions or experts can be used to define an accurate weight vector. Many of the
other dimensions may then be irrelevant.



7.3 Linear classification 169

Winnow(η)

1 w1 ← 1/N

2 for t ← 1 to T do

3 Receive(xt)

4 ŷt ← sgn(wt · xt)

5 Receive(yt)

6 if (ŷt �= yt) then

7 Zt ←∑N
i=1 wt,i exp(ηytxt,i)

8 for i ← 1 to N do

9 wt+1,i ← wt,i exp(ηytxt,i)
Zt

10 else wt+1 ← wt

11 return wT+1

Figure 7.10 Winnow algorithm, with yt ∈ {−1, +1} for all t ∈ [1, T ].

The Winnow algorithm is similar to the Perceptron algorithm, but, instead of
the additive update of the weight vector in the Perceptron case, Winnow’s update
is multiplicative. The pseudocode of the algorithm is given in figure 7.10. The
algorithm takes as input a learning parameter η > 0. It maintains a non-negative
weight vector wt with components summing to one (‖wt‖1 = 1) starting with the
uniform weight vector (line 1). At each round t ∈ [1, T ], if the prediction does not
match the correct label (line 6), each component wt,i, i ∈ [1, N ], is updated by
multiplying it by exp(ηytxt,i) and dividing by the normalization factor Zt to ensure
that the weights sum to one (lines 7–9). Thus, if the label yt and xt,i share the same
sign, then wt,i is increased, while, in the opposite case, it is significantly decreased.

The Winnow algorithm is closely related to the WM algorithm: when xt,i ∈
{−1, +1}, sgn(wt ·xt) coincides with the majority vote, since multiplying the weight
of correct or incorrect experts by eη or e−η is equivalent to multiplying the weight of
incorrect ones by β = e−2η. The multiplicative update rule of Winnow is of course
also similar to that of AdaBoost.

The following theorem gives a mistake bound for the Winnow algorithm in
the separable case, which is similar in form to the bound of theorem 7.8 for the
Perceptron algorithm.
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Theorem 7.12

Let x1, . . . ,xT ∈ R
N be a sequence of T points with ‖xt‖∞ ≤ r∞ for all t ∈ [1, T ],

for some r∞ > 0. Assume that there exist v ∈ R
N , v ≥ 0, and ρ∞ > 0 such that for

all t ∈ [1, T ], ρ∞ ≤ yt(v·xt)
‖v‖1

. Then, for η = ρ∞
r2∞

, the number of updates made by the
Winnow algorithm when processing x1, . . . ,xT is upper bounded by 2 (r2

∞/ρ2
∞) log N .

Proof Let I ⊆ {1, . . . , T} be the set of iterations at which there is an update,
and let M be the total number of updates, i.e., |I| = M . The potential function Φt,
t ∈ [1, T ], used for this proof is the relative entropy of the distribution defined by the
normalized weights vi/‖v‖1 ≥ 0, i ∈ [1, N ], and the one defined by the components
of the weight vector wt,i, i ∈ [1, N ]:

Φt =
N∑

i=1

vi

‖v‖1
log

vi/‖v‖1

wt,i
.

To derive an upper bound on Φt, we analyze the difference of the potential functions
at two consecutive rounds. For all t ∈ I, this difference can be expressed and
bounded as follows:

Φt+1 − Φt =
N∑

i=1

vi

‖v‖1
log

wt,i

wt+1,i

=
N∑

i=1

vi

‖v‖1
log

Zt

exp(ηytxt,i)

= log Zt − η

N∑
i=1

vi

‖v‖1
ytxt,i

≤ log
[ N∑

i=1

wt,i exp(ηytxt,i)
]
− ηρ∞

= log E
wt

[
exp(ηytxt)

]− ηρ∞

≤ log
[
exp(η2(2r∞)2/8)

]− ηρ∞
= η2r2

∞/2 − ηρ∞.

The first inequality follows the definition ρ∞. The subsequent equality rewrites
the summation as an expectation over the distribution defined by wt. The next
inequality uses Hoeffding’s lemma (lemma D.1). Summing up these inequalities
over all t ∈ I yields:

ΦT+1 − Φ1 ≤ M(η2r2
∞/2 − ηρ∞).
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Next, we derive a lower bound by noting that

Φ1 =
N∑

i=1

vi

‖v‖1
log

vi/‖v‖1

1/N
= log N +

N∑
i=1

vi

‖v‖1
log

vi

‖v‖1
≤ log N .

Additionally, since the relative entropy is always non-negative, we have ΦT+1 ≥ 0.
This yields the following lower bound:

ΦT+1 − Φ1 ≥ 0 − log N = − log N .

Combining the upper and lower bounds we see that − log N ≤ M(η2r2
∞/2 − ηρ∞).

Setting η = ρ∞
r2∞

yields the statement of the theorem.

The margin-based mistake bounds of theorem 7.8 and theorem 7.12 for the Percep-
tron and Winnow algorithms have a similar form, but they are based on different
norms. For both algorithms, the norm ‖ · ‖p used for the input vectors xt, t ∈ [1, T ],
is the dual of the norm ‖ · ‖q used for the margin vector v, that is p and q are
conjugate: 1/p + 1/q = 1: in the case of the Perceptron algorithm p = q = 2, while
for Winnow p = ∞ and q = 1.

These bounds imply different types of guarantees. The bound for Winnow is
favorable when a sparse set of the experts i ∈ [1, N ] can predict well. For example,
if v = e1 where e1 is the unit vector along the first axis in R

N and if xt ∈ {−1, +1}N

for all t, then the upper bound on the number of mistakes given for Winnow by
theorem 7.12 is only log N , while the upper bound of theorem 7.8 for the Perceptron
algorithm is N . The guarantee for the Perceptron algorithm is more favorable in
the opposite situation, where sparse solutions are not effective.

7.4 On-line to batch conversion

The previous sections presented several algorithms for the scenario of on-line
learning, including the Perceptron and Winnow algorithms, and analyzed their
behavior within the mistake model, where no assumption is made about the way the
training sequence is generated. Can these algorithms be used to derive hypotheses
with small generalization error in the standard stochastic setting? How can the
intermediate hypotheses they generate be combined to form an accurate predictor?
These are the questions addressed in this section.

Let H be a hypothesis of functions mapping X to Y ′, and let L : Y ′ × Y → R+

be a bounded loss function, that is L ≤ M for some M ≥ 0. We assume a standard
supervised learning setting where a labeled sample S = ((x1, y1), . . . , (xT , yT )) ∈
(X × Y)T is drawn i.i.d. according to some fixed but unknown distribution D. The
sample is sequentially processed by an on-line learning algorithm A. The algorithm
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starts with an initial hypothesis h1 ∈ H and generates a new hypothesis hi+1 ∈ H,
after processing pair (xi, yi), i ∈ [1,m]. The regret of the algorithm is defined as
before by

RT =
T∑

i=1

L(hi(xi), yi) − min
h∈H

T∑
i=1

L(h(xi), yi). (7.24)

The generalization error of a hypothesis h ∈ H is its expected loss R(h) =
E(x,y)∼D[L(h(x), y)].

The following lemma gives a bound on the average of the generalization errors of
the hypotheses generated by A in terms of its average loss 1

T

∑T
i=1 L(hi(xi), yi).

Lemma 7.1

Let S = ((x1, y1), . . . , (xT , yT )) ∈ (X×Y)T be a labeled sample drawn i.i.d. according
to D, L a loss bounded by M and h1, . . . , hT+1 the sequence of hypotheses generated
by an on-line algorithm A sequentially processing S. Then, for any δ > 0, with
probability at least 1 − δ, the following holds:

1
T

T∑
i=1

R(hi) ≤ 1
T

T∑
i=1

L(hi(xi), yi) + M

√
2 log 1

δ

T
. (7.25)

Proof For any i ∈ [1, T ], let Vi be the random variable defined by Vi = R(hi) −
L(hi(xi), yi). Observe that for any i ∈ [1, T ],

E[Vi|x1, . . . , xi−1] = R(hi) − E[L(hi(xi), yi)|hi] = R(hi) − R(hi) = 0.

Since the loss is bounded by M , Vi takes values in the interval [−M,+M ] for
all i ∈ [1, T ]. Thus, by Azuma’s inequality (theorem D.2), Pr[ 1

T

∑T
i=1 Vi ≥ ε] ≤

exp(−2Tε2/(2M)2)). Setting the right-hand side to be equal to δ > 0 yields the
statement of the lemma.

When the loss function is convex with respect to its first argument, the lemma
can be used to derive a bound on the generalization error of the average of the
hypotheses generated by A, 1

T

∑T
t=1 hi, in terms of the average loss of A on S, or

in terms of the regret RT and the infimum error of hypotheses in H.

Theorem 7.13

Let S = ((x1, y1), . . . , (xT , yT )) ∈ (X × Y)T be a labeled sample drawn i.i.d.
according to D, L a loss bounded by M and convex with respect to its first argument,
and h1, . . . , hT+1 the sequence of hypotheses generated by an on-line algorithm A
sequentially processing S. Then, for any δ > 0, with probability at least 1 − δ, each
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of the following holds:

R

(
1
T

T∑
i=1

hi

)
≤ 1

T

T∑
i=1

L(hi(xi), yi) + M

√
2 log 1

δ

T
(7.26)

R

(
1
T

T∑
i=1

hi

)
≤ inf

h∈H
R(h) +

RT

T
+ 2M

√
2 log 2

δ

T
. (7.27)

Proof By the convexity of L with respect to its first argument, for any (x, y) ∈
X × Y, we have L( 1

T

∑T
i=1 hi(x), y) ≤ 1

T

∑T
i=1 L(hi(x), y). Taking the expectation

gives R( 1
T

∑T
i=1 hi) ≤ 1

T

∑T
i=1 R(hi). The first inequality then follows by lemma 7.1.

Thus, by definition of the regret RT , for any δ > 0, the following holds with
probability at least 1 − δ/2:

R

(
1
T

T∑
i=1

hi

)
≤ 1

T

T∑
i=1

L(hi(xi), yi) + M

√
2 log 2

δ

T

≤ min
h∈H

1
T

T∑
i=1

L(h(xi), yi) +
RT

T
+ M

√
2 log 2

δ

T
.

By definition of infh∈H R(h), for any ε > 0, there exists h∗ ∈ H with R(h∗) ≤
infh∈H R(h) + ε. By Hoeffding’s inequality, for any δ > 0, with probability at least

1 − δ/2, 1
T

∑T
i=1 L(h∗(xi), yi) ≤ R(h∗) + M

√
2 log 2

δ

T . Thus, for any ε > 0, by the
union bound, the following holds with probability at least 1 − δ:

R

(
1
T

T∑
i=1

hi

)
≤ 1

T

T∑
i=1

L(h∗(xi), yi) +
RT

T
+ M

√
2 log 2

δ

T

≤ R(h∗) + M

√
2 log 2

δ

T
+

RT

T
+ M

√
2 log 2

δ

T

= R(h∗) +
RT

T
+ 2M

√
2 log 2

δ

T

≤ inf
h∈H

R(h) + ε +
RT

T
+ 2M

√
2 log 2

δ

T
.

Since this inequality holds for all ε > 0, it implies the second statement of the
theorem.

The theorem can be applied to a variety of on-line regret minimization algorithms,
for example when RT /T = O(1/

√
T ). In particular, we can apply the theorem to

the exponential weighted average algorithm. Assuming that the loss L is bounded
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by M = 1 and that the number of rounds T is known to the algorithm, we can use
the regret bound of theorem 7.6. The doubling trick (used in theorem 7.7) can be
used to derive a similar bound if T is not known in advance. Thus, for any δ > 0,
with probability at least 1 − δ, the following holds for the generalization error of
the average of the hypotheses generated by exponential weighted average:

R

(
1
T

T∑
i=1

hi

)
≤ inf

h∈H
R(h) +

√
log N

2T
+ 2

√
2 log 2

δ

T
,

where N is the number of experts, or the dimension of the weight vectors.

7.5 Game-theoretic connection

The existence of regret minimization algorithms can be used to give a simple proof
of von Neumann’s theorem. For any m ≥ 1, we will denote by Δm the set of all
distributions over {1, . . . ,m}, that is Δm = {p ∈ R

m : p ≥ 0 ∧ ‖p‖1 = 1}.
Theorem 7.14 Von Neumann’s minimax theorem
Let m,n ≥ 1. Then, for any two-person zero-sum game defined by matrix M ∈
R

m×n,

min
p∈Δm

max
q∈Δn

p�Mq = max
q∈Δn

min
p∈Δm

p�Mq . (7.28)

Proof The inequality maxq minp p�Mq ≤ minp maxq p�Mq is straightforward,
since by definition of min, for all p ∈ Δm,q ∈ Δn, we have minp p�Mq ≤ p�Mq.
Taking the maximum over q of both sides gives: maxq minp p�Mq ≤ maxq p�Mq
for all p, subsequently taking the minimum over p proves the inequality.2

To show the reverse inequality, consider an on-line learning setting where at each
round t ∈ [1, T ], algorithm A returns pt and incurs loss Mqt. We can assume that
qt is selected in the optimal adversarial way, that is qt ∈ argmaxq∈Δm

p�
t Mq,

and that A is a regret minimization algorithm, that is RT /T → 0, where RT =∑T
t=1 p�

t Mqt − minp∈Δm

∑T
t=1 p�Mqt. Then, the following holds:

min
p∈Δm

max
q∈Δn

p�Mq ≤ max
q

( 1
T

T∑
t=1

pt

)�
Mq ≤ 1

T

T∑
t=1

max
q

p�
t Mq =

1
T

T∑
t=1

p�
t Mqt.

2. More generally, the maxmin is always upper bounded by the minmax for any function
or two arguments and any constraint sets, following the same proof.
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By definition of regret, the right-hand side can be expressed and bounded as follows:

1
T

T∑
t=1

p�
t Mqt = min

p∈Δm

1
T

T∑
t=1

p�Mqt +
RT

T
= min

p∈Δm

p�M
( 1

T

T∑
t=1

qt

)
+

RT

T

≤ max
q∈Δn

min
p∈Δm

p�Mq +
RT

T
.

This implies that the following bound holds for the minmax for all T ≥ 1:

min
p∈Δm

max
q∈Δn

p�Mq ≤ max
q∈Δn

min
p∈Δm

p�Mq +
RT

T

Since limT→+∞ RT

T = 0, this shows that minp maxq p�Mq ≤ maxq minp p�Mq.

7.6 Chapter notes

Algorithms for regret minimization were initiated with the pioneering work of
Hannan [1957] who gave an algorithm whose regret decreases as O(

√
T ) as a function

of T but whose dependency on N is linear. The weighted majority algorithm and
the randomized weighted majority algorithm, whose regret is only logarithmic in N ,
are due to Littlestone and Warmuth [1989]. The exponentiated average algorithm
and its analysis, which can be viewed as an extension of the WM algorithm to
convex non-zero-one losses is due to the same authors [Littlestone and Warmuth,
1989, 1994]. The analysis we presented follows Cesa-Bianchi [1999] and Cesa-Bianchi
and Lugosi [2006]. The doubling trick technique appears in Vovk [1990] and Cesa-
Bianchi et al. [1997]. The algorithm of exercise 7.7 and the analysis leading to a
second-order bound on the regret are due to Cesa-Bianchi et al. [2005]. The lower
bound presented in theorem 7.5 is from Blum and Mansour [2007].

While the regret bounds presented are logarithmic in the number of the experts
N , when N is exponential in the size of the input problem, the computational
complexity of an expert algorithm could be exponential. For example, in the on-
line shortest paths problem, N is the number of paths between two vertices of
a directed graph. However, several computationally efficient algorithms have been
presented for broad classes of such problems by exploiting their structure [Takimoto
and Warmuth, 2002, Kalai and Vempala, 2003, Zinkevich, 2003].

The notion of regret (or external regret) presented in this chapter can be gener-
alized to that of internal regret or even swap regret , by comparing the loss of the
algorithm not just to that of the best expert in retrospect, but to that of any modi-
fication of the actions taken by the algorithm by replacing each occurrence of some
specific action with another one (internal regret), or even replacing actions via an ar-
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bitrary mapping (swap regret) [Foster and Vohra, 1997, Hart and Mas-Colell, 2000,
Lehrer, 2003]. Several algorithms for low internal regret have been given [Foster
and Vohra, 1997, 1998, 1999, Hart and Mas-Colell, 2000, Cesa-Bianchi and Lugosi,
2001, Stoltz and Lugosi, 2003], including a conversion of low external regret to low
swap regret by Blum and Mansour [2005].

The Perceptron algorithm was introduced by Rosenblatt [1958]. The algorithm
raised a number of reactions, in particular by Minsky and Papert [1969], who
objected that the algorithm could not be used to recognize the XOR function.
Of course, the kernel Perceptron algorithm already given by Aizerman et al. [1964]
could straightforwardly succeed to do so using second-degree polynomial kernels.
The margin bound for the Perceptron algorithm was proven by Novikoff [1962]
and is one of the first results in learning theory. The leave-one-out analysis for
SVMs is described by Vapnik [1998]. The upper bound presented for the Perceptron
algorithm in the non-separable case is by Freund and Schapire [1999a]. The Winnow
algorithm was introduced by Littlestone [1987].

The analysis of the on-line to batch conversion and exercise 7.10 are from Cesa-
Bianchi et al. [2001, 2004] (see also Littlestone [1989]). Von Neumann’s minimax
theorem admits a number of different generalizations. See Sion [1958] for a gener-
alization to quasi-concave-convex functions semi-continuous in each argument and
the references therein. The simple proof of von Neumann’s theorem presented here
is entirely based on learning-related techniques. A proof of a more general version
using multiplicative updates was presented by Freund and Schapire [1999b].

On-line learning is a very broad and fast-growing research area in machine
learning. The material presented in this chapter should be viewed only as an
introduction to the topic, but the proofs and techniques presented should indicate
the flavor of most results in this area. For a more comprehensive presentation of on-
line learning and related game theory algorithms and techniques, the reader could
consult the book of Cesa-Bianchi and Lugosi [2006].

7.7 Exercises

7.1 Perceptron lower bound. Let S be a labeled sample of m points in R
N with

xi = ((−1)i, . . . , (−1)i, (−1)i+1︸ ︷︷ ︸
i first components

, 0, . . . , 0) and yi = (−1)i+1. (7.29)

Show that the Perceptron algorithm makes Ω(2N ) updates before finding a sepa-
rating hyperplane, regardless of the order in which it receives the points.

7.2 Generalized mistake bound. Theorem 7.8 presents a margin bound on the
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On-line-SVM(w0)

1 w1 ← w0 � typically w0 = 0

2 for t ← 1 to T do

3 Receive(xt, yt)

4 if yt(wt · xt) < 1 then

5 wt+1 ← wt − η(wt − Cytxt)

6 elseif yt(wt · xt) > 1 then

7 wt+1 ← wt − ηwt

8 else wt+1 ← wt

9 return wT+1

Figure 7.11 On-line SVM algorithm.

maximum number of updates for the Perceptron algorithm for the special case
η = 1. Consider now the general Perceptron update wt+1 ← wt + ηytxt, where
η > 0. Prove a bound on the maximum number of mistakes. How does η affect the
bound?

7.3 Sparse instances. Suppose each input vector xt, t ∈ [1, T ], coincides with the
tth unit vector of R

T . How many updates are required for the Perceptron algorithm
to converge? Show that the number of updates matches the margin bound of
theorem 7.8.

7.4 Tightness of lower bound. Is the lower bound of theorem 7.5 tight? Explain why
or show a counter-example.

7.5 On-line SVM algorithm. Consider the algorithm described in figure 7.11. Show
that this algorithm corresponds to the stochastic gradient descent technique applied
to the SVM problem (4.23) with hinge loss and no offset (i.e., fix p = 1 and b = 0).

7.6 Margin Perceptron. Given a training sample S that is linearly separable with
a maximum margin ρ > 0, theorem 7.8 states that the Perceptron algorithm run
cyclically over S is guaranteed to converge after at most R2/ρ2 updates, where R is
the radius of the sphere containing the sample points. However, this theorem does
not guarantee that the hyperplane solution of the Perceptron algorithm achieves
a margin close to ρ. Suppose we modify the Perceptron algorithm to ensure that
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MarginPerceptron()

1 w1 ← 0

2 for t ← 1 to T do

3 Receive(xt)

4 Receive(yt)

5 if
(
(wt = 0) or (ytwt·xt

‖wt‖ < ρ
2 )
)

then

6 wt+1 ← wt + ytxt

7 else wt+1 ← wt

8 return wT+1

Figure 7.12 Margin Perceptron algorithm.

the margin of the hyperplane solution is at least ρ/2. In particular, consider the
algorithm described in figure 7.12. In this problem we show that this algorithm
converges after at most 16R2/ρ2 updates. Let I denote the set of times t ∈ [1, T ]
at which the algorithm makes an update and let M = |I| be the total number of
updates.

(a) Using an analysis similar to the one given for the Perceptron algorithm,
show that Mρ ≤ ‖wT+1‖. Conclude that if ‖wT+1‖ < 4R2

ρ , then M < 4R2/ρ2.
(For the remainder of this problem, we will assume that ‖wT+1‖ ≥ 4R2

ρ .)

(b) Show that for any t ∈ I (including t = 0), the following holds:

‖wt+1‖2 ≤ (‖wt‖ + ρ/2)2 + R2.

(c) From (b), infer that for any t ∈ I we have

‖wt+1‖ ≤ ‖wt‖ + ρ/2 +
R2

‖wt‖ + ‖wt+1‖ + ρ/2
.

(d) Using the inequality from (c), show that for any t ∈ I such that either
‖wt‖ ≥ 4R2

ρ or ‖wt+1‖ ≥ 4R2

ρ , we have

‖wt+1‖ ≤ ‖wt‖ +
3
4
ρ.

(e) Show that ‖w1‖ ≤ R ≤ 4R2/ρ. Since by assumption we have ‖wT+1‖ ≥
4R2

ρ , conclude that there must exist a largest time t0 ∈ I such that ‖wt0‖ ≤ 4R2

ρ
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and ‖wt0+1‖ ≥ 4R2

ρ .

(f) Show that ‖wT+1‖ ≤ ‖wt0‖ + 3
4Mρ. Conclude that M ≤ 16R2/ρ2.

7.7 Second-order regret bound. Consider the randomized algorithm that differs from
the RWM algorithm only by the weight update, i.e., wt+1,i ← (1 − (1 − β)lt,i)wt,i,
t ∈ [1, T ], which is applied to all i ∈ [1, N ] with 1/2 ≤ β < 1. This algorithm can
be used in a more general setting than RWM since the losses lt,i are only assumed
to be in [0, 1]. The objective of this problem is to show that a similar upper bound
can be shown for the regret.

(a) Use the same potential Wt as for the RWM algorithm and derive a simple
upper bound for log WT+1:

log WT+1 ≤ log N − (1 − β)LT .

(Hint : Use the identity log(1 − x) ≤ −x for x ∈ [0, 1/2].)

(b) Prove the following lower bound for the potential for all i ∈ [1, N ]:

log WT+1 ≥ −(1 − β)LT,i − (1 − β)2
T∑

t=1

l2t,i .

(Hint : Use the identity log(1−x) ≥ −x−x2, which is valid for all x ∈ [0, 1/2].)

(c) Use upper and lower bounds to derive the following regret bound for the
algorithm: RT ≤ 2

√
T log N .

7.8 Polynomial weighted algorithm. The objective of this problem is to show how
another regret minimization algorithm can be defined and studied. Let L be a loss
function convex in its first argument and taking values in [0,M ].

We will assume N > e2 and then for any expert i ∈ [1, N ], we denote by rt,i the
instantaneous regret of that expert at time t ∈ [1, T ], rt,i = L(ŷt, yt)−L(yt,i, yt), and
by Rt,i his cumulative regret up to time t: Rt,i =

∑t
s=1 rt,i. For convenience, we also

define R0,i = 0 for all i ∈ [1, N ]. For any x ∈ R, (x)+ denotes max(x, 0), that is the
positive part of x, and for x = (x1, . . . , xN )� ∈ R

N , (x)+ = ((x1)+, . . . , (xN )+)�.

Let α > 2 and consider the algorithm that predicts at round t ∈ [1, T ] according
to ŷt =

Pn
i=1 wt,iyt,iPn

i=1 wt,i
, with the weight wt,i defined based on the αth power of

the regret up to time (t − 1): wt,i = (Rt−1,i)α−1
+ . The potential function we

use to analyze the algorithm is based on the function Φ defined over R
N by

Φ: x �→ ‖(x)+‖2
α =

[∑N
i=1(xi)α

+

] 2
α .
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(a) Show that Φ is twice differentiable over R
N − B, where B is defined as

follows:

B = {u ∈ R
N : (u)+ = 0}.

(b) For any t ∈ [1, T ], let rt denote the vector of instantaneous regrets,
rt = (rt,1, . . . , rt,N )�, and similarly Rt = (Rt,1, . . . , Rt,N )�. We define the
potential function as Φ(Rt) = ‖(Rt)+‖2

α. Compute ∇Φ(Rt−1) for Rt−1 �∈ B

and show that ∇Φ(Rt−1) · rt ≤ 0 (Hint : use the convexity of the loss with
respect to the first argument).

(c) Prove the inequality r�[∇2Φ(u)]r ≤ 2(α − 1)‖r‖2
α valid for all r ∈ R

N and
u ∈ R

N − B (Hint : write the Hessian ∇2Φ(u) as a sum of a diagonal matrix
and a positive semi-definite matrix multiplied by (2 − α). Also, use Hölder’s
inequality generalizing Cauchy-Schwarz : for any p > 1 and q > 1 with 1

p + 1
q = 1

and u,v ∈ R
N , |u · v| ≤ ‖u‖p‖v‖q).

(d) Using the answers to the two previous questions and Taylor’s formula, show
that for all t ≥ 1, Φ(Rt) − Φ(Rt−1) ≤ (α − 1)‖rt‖2

α, if γRt−1 + (1 − γ)Rt �∈ B

for all γ ∈ [0, 1].

(e) Suppose there exists γ ∈ [0, 1] such that (1−γ)Rt−1 +γRt ∈ B. Show that
Φ(Rt) ≤ (α − 1)‖rt‖2

α.

(f) Using the two previous questions, derive an upper bound on Φ(RT ) ex-
pressed in terms of T , N , and M .

(g) Show that Φ(RT ) admits as a lower bound the square of the regret RT of
the algorithm.

(h) Using the two previous questions give an upper bound on the regret RT .
For what value of α is the bound the most favorable? Give a simple expression
of the upper bound on the regret for a suitable approximation of that optimal
value.

7.9 General inequality. In this exercise we generalize the result of exercise 7.7 by
using a more general inequality: log(1 − x) ≥ −x − x2

α for some 0 < α < 2.

(a) First prove that the inequality is true for x ∈ [0, 1 − α
2 ]. What does this

imply about the valid range of β?

(b) Give a generalized version of the regret bound derived in exercise 7.7 in
terms of α, which shows:

RT ≤ log N

1 − β
+

1 − β

α
T .

What is the optimal choice of β and the resulting bound in this case?
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(c) Explain how α may act as a regularization parameter. What is the optimal
choice of α?

7.10 On-line to batch. Consider the margin loss (4.3), which is convex. Our goal is
to apply theorem 7.13 to the kernel Perceptron algorithm using the margin loss.

(a) Show that the regret RT can be bounded as RT ≤ √
Tr[K]/ρ2 where ρ is

the margin and K is the kernel matrix associated to the sequence x1, . . . , xT .

(b) Apply theorem 7.13. How does this result compare with the margin bounds
for kernel-based hypotheses given by corollary 5.1?

7.11 On-line to batch — non-convex loss. The on-line to batch result of theorem 7.13
heavily relies on the fact that the loss in convex in order to provide a generalization
guarantee for the uniformly averaged hypothesis 1

T

∑T
i=1 hi. For general losses,

instead of using the averaged hypothesis we will use a different strategy and try
to estimate the best single base hypothesis and show the expected loss of this
hypothesis is bounded.

Let mi denote the number of errors of hypothesis hi makes on the points
(xi, . . . , xT ), i.e. the subset of points in the sequence that are not used to train
hi. Then we define the penalized risk estimate of hypothesis hi as,

mi

T − i + 1
+ cδ(T − i + 1) where cδ(x) =

√
1
2x

log
T (T + 1)

δ
.

The term cδ penalizes the empirical error when the test sample is small. Define
ĥ = hi∗ where i∗ = argmini mi/(T − i)+ cδ(T − i+1). We will then show under the
same conditions of theorem 7.13 (with M = 1 for simplicity), but without requiring
the convexity of L, that the following holds with probability at least 1 − δ:

R(ĥ) ≤ 1
T

T∑
i=1

L(hi(xi), yi) + 6

√
1
T

log
2(T + 1)

δ
. (7.30)

(a) Prove the following inequality:

min
i∈[1,T ]

(R(hi) + 2cδ(T − i + 1)) ≤ 1
T

T∑
i=1

R(hi) + 4

√
1
T

log
T + 1

δ
.
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(b) Use part (a) to show that with probability at least 1 − δ,

min
i∈[1,T ]

(R(hi) + 2cδ(T − i + 1))

<

T∑
i=1

L(hi(xi), yi) +

√
2
T

log
1
δ

+ 4

√
1
T

log
T + 1

δ
.

(c) By design, the definition of cδ ensures that with probability at least 1 − δ

R(ĥ) ≤ min
i∈[1,T ]

(R(hi) + 2cδ(T − i + 1)) .

Use this property to complete the proof of (7.30).



8 Multi-Class Classification

The classification problems we examined in the previous chapters were all binary.
However, in most real-world classification problems the number of classes is greater
than two. The problem may consist of assigning a topic to a text document, a
category to a speech utterance or a function to a biological sequence. In all of these
tasks, the number of classes may be on the order of several hundred or more.

In this chapter, we analyze the problem of multi-class classification. We first in-
troduce the multi-class classification learning problem and discuss its multiple set-
tings, and then derive generalization bounds for it using the notion of Rademacher
complexity. Next, we describe and analyze a series of algorithms for tackling the
multi-class classification problem. We will distinguish between two broad classes
of algorithms: uncombined algorithms that are specifically designed for the multi-
class setting such as multi-class SVMs, decision trees, or multi-class boosting, and
aggregated algorithms that are based on a reduction to binary classification and re-
quire training multiple binary classifiers. We will also briefly discuss the problem of
structured prediction, which is a related problem arising in a variety of applications.

8.1 Multi-class classification problem

Let X denote the input space and Y denote the output space, and let D be an
unknown distribution over X according to which input points are drawn. We will
distinguish between two cases: the mono-label case, where Y is a finite set of classes
that we mark with numbers for convenience, Y = {1, . . . , k}, and the multi-label
case where Y = {−1, +1}k. In the mono-label case, each example is labeled with a
single class, while in the multi-label case it can be labeled with several. The latter
can be illustrated by the case of text documents, which can be labeled with several
different relevant topics, e.g., sports, business, and society. The positive components
of a vector in {−1, +1}k indicate the classes associated with an example.

In either case, the learner receives a labeled sample S =
(
(x1, y1), . . . , (xm, ym)

) ∈
(X × Y)m with x1, . . . , xm drawn i.i.d. according to D, and yi = f(xi) for all
i ∈ [1,m], where f : X → Y is the target labeling function. Thus, we consider a
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deterministic scenario, which, as discussed in section 2.4.1, can be straightforwardly
extended to a stochastic one where we have a distribution over X × Y.

Given a hypothesis set H of functions mapping X to Y, the multi-class classifi-
cation problem consists of using the labeled sample S to find a hypothesis h ∈ H

with small generalization error R(h) with respect to the target f :

R(h) = E
x∼D

[1h(x) �=f(x)] mono-label case (8.1)

R(h) = E
x∼D

[ k∑
l=1

1[h(x)]l �=[f(x)]l

]
multi-label case. (8.2)

The notion of Hamming distance dH , that is, the number of corresponding compo-
nents in two vectors that differ, can be used to give a common formulation for both
errors:

R(h) = E
x∼D

[
dH(h(x), f(x))

]
. (8.3)

The empirical error of h ∈ H is denoted by R̂(h) and defined by

R̂(h) =
1
m

m∑
i=1

dH(h(xi), yi) . (8.4)

Several issues, both computational and learning-related, often arise in the multi-
class setting. Computationally, dealing with a large number of classes can be
problematic. The number of classes k directly enters the time complexity of the
algorithms we will present. Even for a relatively small number of classes such as
k = 100 or k = 1,000, some techniques may become prohibitive to use in practice.
This dependency is even more critical in the case where k is very large or even
infinite as in the case of some structured prediction problems.

A learning-related issue that commonly appears in the multi-class setting is the
existence of unbalanced classes. Some classes may be represented by less than 5
percent of the labeled sample, while others may dominate a very large fraction
of the data. When separate binary classifiers are used to define the multi-class
solution, we may need to train a classifier distinguishing between two classes with
only a small representation in the training sample. This implies training on a small
sample, with poor performance guarantees. Alternatively, when a large fraction
of the training instances belong to one class, it may be tempting to propose a
hypothesis always returning that class, since its generalization error as defined
earlier is likely to be relatively low. However, this trivial solution is typically not the
one intended. Instead, the loss function may need to be reformulated by assigning
different misclassification weights to each pair of classes.

Another learning-related issue is the relationship between classes, which can
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be hierarchical. For example, in the case of document classification, the error of
misclassifying a document dealing with world politics as one dealing with real
estate should naturally be penalized more than the error of labeling a document
with sports instead of the more specific label baseball. Thus, a more complex and
more useful multi-class classification formulation would take into consideration the
hierarchical relationships between classes and define the loss function in accordance
with this hierarchy. More generally, there may be a graph relationship between
classes as in the case of the GO ontology in computational biology. The use of
hierarchical relationships between classes leads to a richer and more complex multi-
class classification problem.

8.2 Generalization bounds

In this section, we present margin-based generalization bounds for multi-class
classification in the mono-label case. In the binary setting, classifiers are often
defined based on the sign of a scoring function. In the multi-class setting, a
hypothesis is defined based on a scoring function h : X×Y → R. The label associated
to point x is the one resulting in the largest score h(x, y), which defines the following
mapping from X to Y:

x �→ argmax
y∈Y

h(x, y).

This naturally leads to the following definition of the margin ρh(x, y) of the function
h at a labeled example (x, y):

ρh(x, y) = h(x, y) − max
y′ �=y

h(x, y′).

Thus, h misclassifies (x, y) iff ρh(x, y) ≤ 0. For any ρ > 0, we can define the empirical
margin loss of a hypothesis h for multi-class classification as

R̂ρ(h) =
1
m

m∑
i=1

Φρ(ρh(xi, yi)), (8.5)

where Φρ is the margin loss function (definition 4.3). Thus, the empirical margin
loss for multi-class classification is upper bounded by the fraction of the training
points misclassified by h or correctly classified but with confidence less than or equal
to ρ:

R̂ρ(h) ≤ 1
m

m∑
i=1

1ρh(xi,yi)≤ρ. (8.6)
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The following lemma will be used in the proof of the main result of this section.

Lemma 8.1

Let F1, . . . ,Fl be l hypothesis sets in R
X , l ≥ 1, and let G = {max{h1, . . . , hl} : hi ∈

Fi, i ∈ [1, l]}. Then, for any sample S of size m, the empirical Rademacher
complexity of G can be upper bounded as follows:

R̂S(G) ≤
l∑

j=1

R̂S(Fj). (8.7)

Proof Let S = (x1, . . . , xm) be a sample of size m. We first prove the result in
the case l = 2. By definition of the max operator, for any h1 ∈ F1 and h2 ∈ F2,

max{h1, h2} =
1
2
[h1 + h2 + |h1 − h2|].

Thus, we can write:

R̂S(G) =
1
m

E
σ

[
sup

h1∈F1
h2∈F2

m∑
i=1

σi max{h1(xi), h2(xi)}
]

=
1

2m
E
σ

[
sup

h1∈F1
h2∈F2

m∑
i=1

σi

(
h1(xi) + h2(xi) + |(h1 − h2)(xi)|

)]

≤ 1
2
R̂S(F1) +

1
2
R̂S(F2) +

1
2m

E
σ

[
sup

h1∈F1
h2∈F2

m∑
i=1

σi|(h1 − h2)(xi)|
]
, (8.8)

using the sub-additivity of sup. Since x �→ |x| is 1-Lipschitz, by Talagrand’s lemma
(lemma 4.2), the last term can be bounded as follows

1
2m

E
σ

[
sup

h1∈F1
h2∈F2

m∑
i=1

σi|(h1 − h2)(xi)|
]
≤ 1

2m
E
σ

[
sup

h1∈F1
h2∈F2

m∑
i=1

σi(h1 − h2)(xi)
]

≤ 1
2
R̂S(F1) +

1
2m

E
σ

[
sup

h2∈F2

m∑
i=1

−σih2(xi)
]

=
1
2
R̂S(F1) +

1
2
R̂S(F2), (8.9)

where we again use the sub-additivity of sup for the second inequality and the fact
that σi and −σi have the same distribution for any i ∈ [1,m] for the last equality.
Combining (8.8) and (8.9) yields R̂S(G) ≤ R̂S(F1) + R̂S(F2). The general case can
be derived from the case l = 2 using max{h1, . . . , hl} = max{h1, max{h2, . . . , hl}}
and an immediate recurrence.
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For any family of hypotheses mapping X × Y to R, we define Π1(H) by

Π1(H) = {x �→ h(x, y) : y ∈ Y, h ∈ H}.

The following theorem gives a general margin bound for multi-class classification.

Theorem 8.1 Margin bound for multi-class classification
Let H ⊆ R

X×Y be a hypothesis set with Y = {1, . . . , k}. Fix ρ > 0. Then, for
any δ > 0, with probability at least 1 − δ, the following multi-class classification
generalization bound holds for all h ∈ H:

R(h) ≤ R̂ρ(h) +
2k2

ρ
Rm(Π1(H)) +

√
log 1

δ

2m
. (8.10)

Proof The first part of the proof is similar to that of theorem 4.4. Let H̃ be
the family of hypotheses mapping X × Y to R defined by H̃ = {z = (x, y) �→
ρh(x, y) : h ∈ H}. Consider the family of functions H̃ = {Φρ ◦ r : r ∈ H̃} derived
from H̃, which take values in [0, 1]. By theorem 3.1, with probability at least 1 − δ,
for all h ∈ H,

E
[
Φρ(ρh(x, y))

] ≤ R̂ρ(h) + 2Rm

(
Φρ ◦ H̃

)
+

√
log 1

δ

2m
.

Since 1u≤0 ≤ Φρ(u) for all u ∈ R, the generalization error R(h) is a lower bound on
the left-hand side, R(h) = E[1y[h(x′)−h(x)]≤0] ≤ E

[
Φρ(ρh(x, y))

]
, and we can write:

R(h) ≤ R̂ρ(h) + 2Rm

(
Φρ ◦ H̃

)
+

√
log 1

δ

2m
.

As in the proof of theorem 4.4, we can show that Rm

(
Φρ ◦ H̃

) ≤ 1
ρRm(H̃) using
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the (1/ρ)-Lipschitzness of Φρ. Here, Rm(H̃) can be upper bounded as follows:

Rm(H̃) =
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σiρh(xi, yi)
]

=
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

∑
y∈Y

σiρh(xi, y)1y=yi

]
≤ 1

m

∑
y∈Y

E
S,σ

[
sup
h∈H

m∑
i=1

σiρh(xi, y)1y=yi

]
(sub-additivity of sup)

=
1
m

∑
y∈Y

E
S,σ

[
sup
h∈H

m∑
i=1

σiρh(xi, y)
( 2(1y=yi

)−1

2 + 1
2

)]
≤ 1

2m

∑
y∈Y

E
S,σ

[
sup
h∈H

m∑
i=1

σiεiρh(xi, y)
]
+

(
εi = 2(1y=yi) − 1

)
1

2m

∑
y∈Y

E
S,σ

[
sup
h∈H

m∑
i=1

σiρh(xi, y)
]

(sub-additivity of sup)

=
1
m

∑
y∈Y

E
S,σ

[
sup
h∈H

m∑
i=1

σiρh(xi, y)
]
,

where by definition εi ∈ {−1, +1} and we use the fact that σi and σiεi have the
same distribution.

Let Π1(H)(k−1) = {max{h1, . . . , hl} : hi ∈ Π1(H), i ∈ [1, k − 1]}. Now, rewriting
ρh(xi, y) explicitly, using again the sub-additivity of sup, observing that −σi and
σi are distributed in the same way, and using lemma 8.1 leads to

Rm(H̃) ≤ 1
m

∑
y∈Y

E
S,σ

[
sup
h∈H

m∑
i=1

σi

(
h(xi, y) − max

y′ �=y
h(xi, y

′)
)]

≤
∑
y∈Y

[
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σih(xi, y)
]

+
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

−σi max
y′ �=y

h(xi, y
′)
]]

=
∑
y∈Y

[
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σih(xi, y)
]

+
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σi max
y′ �=y

h(xi, y
′)
]]

≤
∑
y∈Y

[
1
m

E
S,σ

[
sup

h∈Π1(H)

m∑
i=1

σih(xi)
]

+
1
m

E
S,σ

[
sup

h∈Π1(H)(k−1)

m∑
i=1

σih(xi)
]]

≤ k

[
k

m
E

S,σ

[
sup

h∈Π1(H)

m∑
i=1

σih(xi)
]]

= k2Rm(Π1(H)).

This concludes the proof.
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These bounds can be generalized to hold uniformly for all ρ > 0 at the cost of
an additional term

√
(log log2(2/ρ))/m, as in theorem 4.5 and exercise 4.2. As for

other margin bounds presented in previous sections, they show the conflict between
two terms: the larger the desired pairwise ranking margin ρ, the smaller the middle
term, at the price of a larger empirical multi-class classification margin loss R̂ρ. Note,
however, that here there is additionally a quadratic dependency on the number of
classes k. This suggests weaker guarantees when learning with a large number of
classes or the need for even larger margins ρ for which the empirical margin loss
would be small.

For some hypothesis sets, a simple upper bound can be derived for the
Rademacher complexity of Π1(H), thereby making theorem 8.1 more explicit. We
will show this for kernel-based hypotheses. Let K : X ×X → R be a PDS kernel and
let Φ : X → H be a feature mapping associated to K. In multi-class classification, a
kernel-based hypothesis is based on k weight vectors w1, . . . ,wk ∈ H. Each weight
vector wl, l ∈ [1, k], defines a scoring function x �→ wl ·Φ(x) and the class associated
to point x ∈ X is given by

argmax
y∈Y

wy · Φ(x).

We denote by W the matrix formed by these weight vectors: W = (w�
1 , . . . ,w�

k )�

and for any p ≥ 1 denote by ‖W‖H,p the LH,p group norm of W defined by

‖W‖H,p =
( k∑

l=1

‖wl‖p
H

)1/p
.

For any p ≥ 1, the family of kernel-based hypotheses we will consider is1

HK,p = {(x, y) ∈ X × {1, . . . , k} �→ wy · Φ(x) : W = (w1, . . . ,wk)�, ‖W‖H,p ≤ Λ}.

Proposition 8.1 Rademacher complexity of multi-class kernel-based hy-
potheses
Let K : X × X → R be a PDS kernel and let Φ : X → H be a feature mapping
associated to K. Assume that there exists r > 0 such that K(x, x) ≤ r2 for all
x ∈ X . Then, for any m ≥ 1, Rm(Π1(HK,p)) can be bounded as follows:

Rm(Π1(HK,p)) ≤
√

r2Λ2

m
.

Proof Let S = (x1, . . . , xm) denote a sample of size m. Observe that for all

1. The hypothesis set H can also be defined via H = {h ∈ R
X×Y : h(·, y) ∈ H ∧ ‖h‖K,p ≤

Λ}, where ‖h‖K,p =
` Pk

y=1 ‖h(·, y)‖p
H

´1/p
, without referring to a feature mapping for K.
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l ∈ [1, k], the inequality ‖wl‖H ≤ (∑k
l=1 ‖wl‖p

H

)1/p = ‖W‖H,p holds. Thus, the
condition ‖W‖H,p ≤ Λ implies that ‖wl‖H ≤ Λ for all l ∈ [1, k]. In view of that,
the Rademacher complexity of the hypothesis set Π1(HK,p) can be expressed and
bounded as follows:

R̂S(Π1(HK,p)) =
1
m

E
S,σ

[
sup
y∈Y

‖W‖≤Λ

〈
wy,

m∑
i=1

σiΦ(xi)
〉]

≤ 1
m

E
S,σ

[
sup
y∈Y

‖W‖≤Λ

‖wy‖H

∥∥∥ m∑
i=1

σiΦ(xi)
∥∥∥

H

]
(Cauchy-Schwarz ineq. )

≤ Λ
m

E
S,σ

[∥∥∥ m∑
i=1

σiΦ(xi)
∥∥∥

H

]

≤ Λ
m

[
E

S,σ

[∥∥∥ m∑
i=1

σiΦ(xi)
∥∥∥2

H

]]1/2

(Jensen’s inequality)

=
Λ
m

[
E

S,σ

[ m∑
i=1

‖Φ(xi)‖2
H

]]1/2

(i �= j ⇒ E
σ
[σiσj ] = 0)

=
Λ
m

[
E

S,σ

[ m∑
i=1

K(xi, xi)
]]1/2

≤ Λ
√

mr2

m
=

√
r2Λ2

m
,

which concludes the proof.

Combining theorem 8.1 and proposition 8.1 yields directly the following result.

Corollary 8.1 Margin bound for multi-class classification with kernel-
based hypotheses
Let K : X × X → R be a PDS kernel and let Φ : X → H be a feature mapping
associated to K. Assume that there exists r > 0 such that K(x, x) ≤ r2 for all
x ∈ X . Fix ρ > 0. Then, for any δ > 0, with probability at least 1 − δ, the following
multi-class classification generalization bound holds for all h ∈ HK,p:

R(h) ≤ R̂ρ(h) + 2k2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
. (8.11)

In the next two sections, we describe multi-class classification algorithms that
belong to two distinct families: uncombined algorithms, which are defined by a single
optimization problem, and aggregated algorithms, which are obtained by training
multiple binary classifications and by combining their outputs.
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8.3 Uncombined multi-class algorithms

In this section, we describe three algorithms designed specifically for multi-class
classification. We start with a multi-class version of SVMs, then describe a boosting-
type multi-class algorithm, and conclude with decision trees, which are often used
as base learners in boosting.

8.3.1 Multi-class SVMs

We describe an algorithm that can be derived directly from the theoretical guar-
antees presented in the previous section. Proceeding as in section 4.4 for classifi-
cation, the guarantee of corollary 8.1 can be expressed as follows: for any δ > 0,
with probability at least 1 − δ, for all h ∈ HK,2 = {(x, y) → wy · Φ(x) : W =
(w1, . . . ,wk)�,

∑k
l=1 ‖wl‖2 ≤ Λ2},

R(h) ≤ 1
m

m∑
i=1

ξi + 4k2

√
r2Λ2

m
+

√
log 1

δ

2m
, (8.12)

where ξi = max
(
1 − [wyi

· Φ(xi) − maxy′ �=yi
wy′ · Φ(xi)], 0

)
for all i ∈ [1,m].

An algorithm based on this theoretical guarantee consists of minimizing the
right-hand side of (8.12), that is, minimizing an objective function with a term
corresponding to the sum of the slack variables ξi, and another one minimizing
‖W‖H,2 or equivalently

∑k
l=1 ‖wl‖2. This is precisely the optimization problem

defining the multi-class SVM algorithm:

min
W,ξ

1
2

k∑
l=1

‖wl‖2 + C

m∑
i=1

ξi

subject to: ∀i ∈ [1,m],∀l ∈ Y − {yi},
wyi

· Φ(xi) ≥ wl · Φ(xi) + 1 − ξi.

The decision function learned is of the form x �→ argmaxl∈Y wl · Φ(x). As with
the primal problem of SVMs, this is a convex optimization problem: the objective
function is convex, since it is a sum of convex functions, and the constraints are
affine and thus qualified. The objective and constraint functions are differentiable,
and the KKT conditions hold at the optimum. Defining the Lagrangian and applying
these conditions leads to the equivalent dual optimization problem, which can be
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expressed in terms of the kernel function K alone:

max
α∈Rm×k

m∑
i=1

αi · eyi
− 1

2

m∑
i=1

(αi · αj)K(xi, xj)

subject to: 0 ≤ αi ≤ C ∧ αi · 1 = 0,∀i ∈ [1,m].

Here, α ∈ R
m×k is a matrix, αi denotes the ith row of α, and el the lth unit vector

in R
k, l ∈ [1, k]. Both the primal and dual problems are simple QPs generalizing

those of the standard SVM algorithm. However, the size of the solution and the
number of constraints for both problems is in Ω(mk), which, for a large number of
classes k, can make it difficult to solve. However, there exist specific optimization
solutions designed for this problem based on a decomposition of the problem into
m disjoint sets of constraints.

8.3.2 Multi-class boosting algorithms

We describe a boosting algorithm for multi-class classification called AdaBoost.MH ,
which in fact coincides with a special instance of AdaBoost. An alternative multi-
class classification algorithm based on similar boosting ideas, AdaBoost.MR, is
described and analyzed in exercise 9.5. AdaBoost.MH applies to the multi-label
setting where Y = {−1, +1}k. As in the binary case, it returns a convex combination
of base classifiers selected from a hypothesis set H. Let F be the following objective
function defined for all samples S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and
α = (α1, . . . , αn) ∈ R

n, n ≥ 1, by

F (α) =
m∑

i=1

k∑
l=1

e−yi[l]gn(xi,l) =
m∑

i=1

k∑
l=1

e−yi[l]
Pn

t=1 αtht(xi,l), (8.13)

where gn =
∑n

t=1 αtht and where yi[l] denotes the lth coordinate of yi for any
i ∈ [1,m] and l ∈ [1, k]. F is a convex and differentiable upper bound on the
multi-class multi-label loss:

m∑
i=1

k∑
l=1

1yi[l] �=gn(xi,l) ≤
m∑

i=1

k∑
l=1

e−yi[l]gn(xi,l), (8.14)

since for any x ∈ X with label y = f(x) and any l ∈ [1, k], the inequality
1y[l] �=gn(x,l) ≤ e−y[l]gn(x,l) holds. AdaBoost.MH coincides exactly with the appli-
cation of coordinate descent to the objective function F . Figure 8.1 gives the
pseudocode of the algorithm in the case where the base classifiers are functions
mapping from X × Y to {−1, +1}. The algorithm takes as input a labeled sam-
ple S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and maintains a distribution Dt over
{1, . . . , m}×Y . The remaining details of the algorithm are similar to AdaBoost. In
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AdaBoost.MH(S = ((x1, y1), . . . , (xm, ym)))

1 for i ← 1 to m do

2 for l ← 1 to k do

3 D1(i, l) ← 1
mk

4 for t ← 1 to T do

5 ht ← base classifier in H with small error εt = Pr(i,l)∼Dt
[ht(xi, l) �= yi[l]]

6 αt ← 1
2 log 1−εt

εt

7 Zt ← 2[εt(1 − εt)]
1
2 � normalization factor

8 for i ← 1 to m do

9 for l ← 1 to k do

10 Dt+1(i, l) ← Dt(i,l) exp(−αtyi[l]ht(xi,l))
Zt

11 g ←∑T
t=1 αtht

12 return h = sgn(g)

Figure 8.1 AdaBoost.MH algorithm, for H ⊆ ({−1, +1}k)X×Y .

fact, AdaBoost.MH exactly coincides with AdaBoost applied to the training sam-
ple derived from S by splitting each labeled point (xi, yi) into k labeled examples
((xi, l), yi[l]), with each example (xi, l) in X × Y and its label in {−1, +1}:

(xi, yi) → ((xi, 1), yi[1]), . . . , ((xi, k), yi[k]), i ∈ [1,m].

Let S′ denote the resulting sample, then S′ = ((x1, 1), y1[1]), . . . , (xm, k), ym[k])).
S′ contains mk examples and the expression of the objective function F in (8.13)
coincides exactly with that of the objective function of AdaBoost for the sample S′.
In view of this connection, the theoretical analysis along with the other observations
we presented for AdaBoost in chapter 6 also apply here. Hence, we will focus on
aspects related to the computational efficiency and to the weak learning condition
that are specific to the multi-class scenario.

The complexity of the algorithm is that of AdaBoost applied to a sample of
size mk. For X ⊆ R

N , using boosting stumps as base classifiers, the complexity of
the algorithm is therefore in O((mk) log(mk) + mkNT ). Thus, for a large number
of classes k, the algorithm may become impractical using a single processor. The
weak learning condition for the application of AdaBoost in this scenario requires
that at each round there exists a base classifier ht : X × Y → {−1, +1} such that
Pr(i,l)∼Dt

[ht(xi, l) �= yi[l]] < 1/2. This may be hard to achieve if classes are close
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Figure 8.2 Left: example of a decision tree with numerical questions based on two
variables X1 and X2. Here, each leaf is marked with the region it defines. The class
labeling for a leaf is obtained via majority vote based on the training points falling
in the region it defines. Right: Partition of the two-dimensional space induced by
that decision tree.

and it is difficult to distinguish between them. It is also more difficult in this context
to come up with “rules of thumb” ht defined over X × Y.

8.3.3 Decision trees

We present and discuss the general learning method of decision trees that can
be used in multi-class classification, but also in other learning problems such as
regression (chapter 10) and clustering. Although the empirical performance of
decision trees often is not state-of-the-art, decision trees can be used as weak learners
with boosting to define effective learning algorithms. Decision trees are also typically
fast to train and evaluate and relatively easy to interpret.

Definition 8.1 Binary decision tree
A binary decision tree is a tree representation of a partition of the feature space.
Figure 8.2 shows a simple example in the case of a two-dimensional space based
on two features X1 and X2, as well as the partition it represents. Each interior
node of a decision tree corresponds to a question related to features. It can be a
numerical question of the form Xi ≤ a for a feature variable Xi, i ∈ [1, N ], and
some threshold a ∈ R, as in the example of figure 8.2, or a categorical question
such as Xi ∈ {blue,white, red}, when feature Xi takes a categorical value such as a
color. Each leaf is labeled with a label l ∈ Y.

Decision trees can be defined using more complex node questions, resulting in
partitions based on more complex decision surfaces. For example, binary space
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GreedyDecisionTrees(S = ((x1, y1), . . . , (xm, ym)))

1 tree ← {n0} � root node.

2 for t ← 1 to T do

3 (nt, qt) ← argmin(n,q) F̃ (n, q)

4 Split(tree, nt, qt)

5 return tree

Figure 8.3 Greedy algorithm for building a decision tree from a labeled sample S.
The procedure Split(tree, nt, qt) splits node nt by making it an internal node with
question qt and leaf children n−(n, q) and n+(n, q), each labeled with the dominating
class of the region it defines, with ties broken arbitrarily.

partition (BSP) trees partition the space with convex polyhedral regions, based
on questions of the form

∑n
i=1 αiXi ≤ a, and sphere trees partition with pieces

of spheres based on questions of the form ‖X − a0‖ ≤ a, where X is a feature
vector, a0 a fixed vector, and a is a fixed positive real number. More complex
tree questions lead to richer partitions and thus hypothesis sets, which can cause
overfitting in the absence of a sufficiently large training sample. They also increase
the computational complexity of prediction and training. Decision trees can also
be generalized to branching factors greater than two, but binary trees are most
commonly used due to computational considerations.

Prediction/partitioning: To predict the label of any point x ∈ X we start
at the root node of the decision tree and go down the tree until a leaf is found,
by moving to the right child of a node when the response to the node question is
positive, and to the left child otherwise. When we reach a leaf, we associate x with
the label of this leaf.

Thus, each leaf defines a region of X formed by the set of points corresponding
exactly to the same node responses and thus the same traversal of the tree. By
definition, no two regions intersect and all points belong to exactly one region.
Thus, leaf regions define a partition of X , as shown in the example of figure 8.2. In
multi-class classification, the label of a leaf is determined using the training sample:
the class with the majority representation among the training points falling in a
leaf region defines the label of that leaf, with ties broken arbitrarily.

Learning: We will discuss two different methods for learning a decision tree
using a labeled sample. The first method is a greedy technique. This is motivated
by the fact that the general problem of finding a decision tree with the smallest
error is NP-hard. The method consists of starting with a tree reduced to a single
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(root) node, which is a leaf whose label is the class that has majority over the
entire sample. Next, at each round, a node nt is split based on some question
qt. The pair (nt, qt) is chosen so that the node impurity is maximally decreased
according to some measure of impurity F . We denote by F (n) the impurity of n.
The decrease in node impurity after a split of node n based on question q is defined
as follows. Let n+(n, q) denote the right child of n after the split, n−(q, n) the
left child, and η(n, q) the fraction of the points in the region defined by n that are
moved to n−(n, q). The total impurity of the leaves n−(n, q) and n+(n, q) is therefore
η(n, q)F (n−(n, q))+(1−η(n, q))F (n+(n, q)). Thus, the decrease in impurity F̃ (n, q)
by that split is given by

F̃ (n, q) = F (n) − [η(n, q)F (n−(n, q)) + (1 − η(n, q))F (n+(n, q))].

Figure 8.3 shows the pseudocode of this greedy construction based on F̃ . In practice,
the algorithm is stopped once all nodes have reached a sufficient level of purity, when
the number of points per leaf has become too small for further splitting or based
on some other similar heuristic.

For any node n and class l ∈ [1, k], let pl(n) denote the fraction of points at n that
belong to class l. Then, the three most commonly used measures of node impurity
F are defined as follows:

F (n) =

⎧⎪⎪⎨⎪⎪⎩
1 − maxl∈[1,k] pl(n) misclassification;

−∑k
l=1 pl(n) log2 pl(n) entropy ;∑k

l=1 pl(n)(1 − pl(n)) Gini index .

Figure 8.4 illustrates these definitions in the special cases of two classes (k = 2). The
entropy and Gini index impurity functions are upper bounds on the misclassification
impurity function. All three functions are convex, which ensures that

F (n) − [η(n, q)F (n−(n, q)) + (1 − η(n, q))F (n+(n, q))] ≥ 0.

However, the misclassification function is piecewise linear, so F̃ (n, q) is zero if the
fraction of positive points remains less than (or more than) half after a split. In
some cases, the impurity cannot be decreased by any split using that criterion. In
contrast, the entropy and Gini functions are strictly convex, which guarantees a
strict decrease in impurity. Furthermore, they are differentiable which is a useful
feature for numerical optimization. Thus, the Gini index and the entropy criteria
are typically preferred in practice.

The greedy method just described faces some issues. One issue relates to the
greedy nature of the algorithm: a seemingly bad split may dominate subsequent
useful splits, which could lead to trees with less impurity overall. This can be
addressed to a certain extent by using a look-ahead of some depth d to determine
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Figure 8.4 Node impurity plotted as a function of the fraction of positive examples
in the binary case: misclassification (in black), entropy (in green, scaled by .5 to set
the maximum to the same value for all three functions), and the Gini index (in red).

the splitting decisions, but such look-aheads can be computationally very costly.
Another issue relates to the size of the resulting tree. To achieve some desired level
of impurity, trees of relatively large sizes may be needed. But larger trees define
overly complex hypotheses with high VC-dimensions (see exercise 9.6) and thus
could overfit.

An alternative method for learning decision trees using a labeled training sample
is based on the so-called grow-then-prune strategy . First a very large tree is grown
until it fully fits the training sample or until no more than a very small number of
points are left at each leaf. Then, the resulting tree, denoted as tree, is pruned back
to minimize an objective function defined based on generalization bounds as the
sum of an empirical error and a complexity term that can be expressed in terms of
the size of t̃ree, the set of leaves of tree:

Gλ(tree) =
∑

n∈gtree
|n|F (n) + λ|t̃ree|. (8.15)

λ ≥ 0 is a regularization parameter determining the trade-off between misclassifi-
cation, or more generally impurity, versus tree complexity. For any tree tree′, we
denote by R̂(tree′) the total empirical error

∑
n∈gtree′ |n|F (n). We seek a sub-tree

treeλ of tree that minimizes Gλ and that has the smallest size. treeλ can be shown
to be unique. To determine treeλ, the following pruning method is used, which de-
fines a finite sequence of nested sub-trees tree(0), . . . , tree(n). We start with the full
tree tree(0) = tree and for any i ∈ [0, n−1], define tree(i+1) from tree(i) by collapsing
an internal node n′ of tree(i), that is by replacing the sub-tree rooted at n′ with a
leaf, or equivalently by combining the regions of all the leaves dominated by n′. n′

is chosen so that collapsing it causes the smallest per node increase in R̂(tree(i)),
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that is the smallest r(tree(i), n′) defined by

r(tree(i), n′) =
|n′|F (n′) − R̂(tree′)

|t̃ree′| − 1
,

where n′ is an internal node of tree(i). If several nodes n′ in tree(i) cause the same
smallest increase per node r(tree(i), n′), then all of them are pruned to define tree(i+1)

from tree(i). This procedure continues until the tree tree(n) obtained has a single
node. The sub-tree treeλ can be shown to be among the elements of the sequence
tree(0), . . . , tree(n). The parameter λ is determined via n-fold cross-validation.

Decision trees seem relatively easy to interpret, and this is often underlined as
one of their most useful features. However, such interpretations should be carried
out with care since decision trees are unstable: small changes in the training data
may lead to very different splits and thus entirely different trees, as a result of their
hierarchical nature. Decision trees can also be used in a natural manner to deal
with the problem of missing features , which often appears in learning applications;
in practice, some features values may be missing because the proper measurements
were not taken or because of some noise source causing their systematic absence. In
such cases, only those variables available at a node can be used in prediction. Finally,
decision trees can be used and learned from data in a similar way in regression (see
chapter 10).2

8.4 Aggregated multi-class algorithms

In this section, we discuss a different approach to multi-class classification that
reduces the problem to that of multiple binary classification tasks. A binary clas-
sification algorithm is then trained for each of these tasks independently, and the
multi-class predictor is defined as a combination of the hypotheses returned by each
of these algorithms. We first discuss two standard techniques for the reduction of
multi-class classification to binary classification, and then show that they are both
special instances of a more general framework.

8.4.1 One-versus-all

Let S = ((x1, y1), . . . , xm, ym)) ∈ (X × Y)m be a labeled training sample. A
straightforward reduction of the multi-class classification to binary classification

2. The only changes to the description for classification are the following. For prediction,
the label of a leaf is defined as the mean squared average of the labels of the points falling
in that region. For learning, the impurity function is the mean squared error.
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is based on the so-called one-versus-all (OVA) or one-versus-the-rest technique.
This technique consists of learning k binary classifiers hl : X → {−1, +1}, l ∈ Y,
each seeking to discriminate one class l ∈ Y from all the others. For any l ∈ Y, hl

is obtained by training a binary classification algorithm on the full sample S after
relabeling points in class l with 1 and all others with −1. For l ∈ Y, assume that
hl is derived from the sign of a scoring function fl : X → R, that is hl = sgn(fl), as
in the case of many of the binary classification algorithms discussed in the previous
chapters. Then, the multi-class hypothesis h : X → Y defined by the OVA technique
is given by:

∀x ∈ X , h(x) = argmax
l∈Y

fl(x). (8.16)

This formula may seem similar to those defining a multi-class classification hypoth-
esis in the case of uncombined algorithms. Note, however, that for uncombined
algorithms the functions fl are learned together, while here they are learned in-
dependently. Formula (8.16) is well-founded when the scores given by functions fl

can be interpreted as confidence scores, that is when fl(x) is learned as an esti-
mate of the probability of x conditioned on class l. However, in general, the scores
given by functions fl, l ∈ Y, are not comparable and the OVA technique based
on (8.16) admits no principled justification. This is sometimes referred to as a cal-
ibration problem. Clearly, this problem cannot be corrected by simply normalizing
the scores of each function to make their magnitudes uniform, or by applying other
similar heuristics. When it is justifiable, the OVA technique is simple and its com-
putational cost is k times that of training a binary classification algorithm, which
is similar to the computation costs for many uncombined algorithms.

8.4.2 One-versus-one

An alternative technique, known as the one-versus-one (OVO) technique, consists
of using the training data to learn (independently), for each pair of distinct classes
(l, l′) ∈ Y2, l �= l′, a binary classifier hll′ : X → {−1, 1} discriminating between
classes l and l′. For any (l, l′) ∈ Y2, hll′ is obtained by training a binary classification
algorithm on the sub-sample containing exactly the points labeled with l or l′,
with the value +1 returned for class l′ and −1 for class l. This requires training(
k
2

)
= k(k−1)/2 classifiers, which are combined to define a multi-class classification

hypothesis h via majority vote:

∀x ∈ X , h(x) = argmax
l′∈Y

∣∣{l : hll′(x) = 1}∣∣. (8.17)

Thus, for a fixed point x ∈ X , if we describe the prediction values hll′(x) as the
results of the matches in a tournament between two players l and l′, with hll′(x) = 1
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Training Testing

OVA O(kmα) O(kct)

OVO O(k2−αmα) O(k2ct)

Table 8.1 Comparison of the time complexity the OVA and OVO techniques for
both training and testing. The table assumes a full training sample of size m with
each class represented by m/k points. The time for training a binary classification
algorithm on a sample of size n is assumed to be in O(nα). Thus, the training time
for the OVO technique is in O(k2(m/k)α) = O(k2−αmα). ct denotes the cost of testing
a single classifier.

indicating l′ winning over l, then the class predicted by h can be interpreted as the
one with the largest number of wins in that tournament.

Let x ∈ X be a point belonging to class l′. By definition of the OVO technique,
if hll′(x) = 1 for all l �= l′, then the class associated to x by OVO is the correct
class l′ since

∣∣{l : hll′(x) = 1}∣∣ = k−1 and no other class can reach (k−1) wins. By
contraposition, if the OVO hypothesis misclassifies x, then at least one of the (k−1)
binary classifiers hll′ , l �= l′, incorrectly classifies x. Assume that the generalization
error of all binary classifiers hll′ used by OVO is at most r, then, in view of this
discussion, the generalization error of the hypothesis returned by OVO is at most
(k − 1)r.

The OVO technique is not subject to the calibration problem pointed out in the
case of the OVA technique. However, when the size of the sub-sample containing
members of the classes l and l′ is relatively small, hll′ may be learned without
sufficient data or with increased risk of overfitting. Another concern often raised for
the use of this technique is the computational cost of training k(k − 1)/2 binary
classifiers versus that of the OVA technique.

Taking a closer look at the computational requirements of these two methods
reveals, however, that the disparity may not be so great and that in fact under
some assumptions the time complexity of training for OVO could be less than that
of OVA. Table 8.1 compares the computational complexity of these methods both
for training and testing assuming that the complexity of training a binary classifier
on a sample of size m is in O(mα) and that each class is equally represented in
the training set, that is by m/k points. Under these assumptions, if α ∈ [2, 3) as in
the case of some algorithms solving a QP problem, such as SVMs, then the time
complexity of training for the OVO technique is in fact more favorable than that
of OVA. For α = 1, the two are comparable and it is only for sub-linear algorithms
that the OVA technique would benefit from a better complexity. In all cases, at test
time, OVO requires k(k−1)/2 classifier evaluations, which is (k−1) times more than
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OVA. However, for some algorithms the evaluation time for each classifier could be
much smaller for OVO. For example, in the case of SVMs, the average number of
support vectors may be significantly smaller for OVO, since each classifier is trained
on a significantly smaller sample. If the number of support vectors is k times smaller
and if sparse feature representations are used, then the time complexities of both
techniques for testing are comparable.

8.4.3 Error-correction codes

A more general method for the reduction of multi-class to binary classification is
based on the idea of error-correction codes (ECOC). This technique consists of
assigning to each class l ∈ Y a code word of length c ≥ 1, which in the simplest case
is a binary vector Ml ∈ {−1, +1}c. Ml serves as a signature for class l, and together
these vectors define a matrix M ∈ {−1, +1}k×c whose lth row is Ml, as illustrated
by figure 8.5. Next, for each column j ∈ [1, c], a binary classifier hj : X → {−1, +1}
is learned using the full training sample S, after relabeling points that belong to
a class of column l labeled with +1, and all others with −1. For any x ∈ X , let
h(x) denote the vector h(x) = (h1(x), . . . , hc(x))�. Then, the multi-class hypothesis
h : X → Y is defined by

∀x ∈ X , h(x) = argmax
l∈Y

dH

(
Ml,h(x)

)
. (8.18)

Thus, the class predicted is the one whose signatures is the closest to h(x) in
Hamming distance. Figure 8.5 illustrates this definition: no row of matrix M
matches the vector of predictions h(x) in that case, but the third row shares the
largest number of components with h(x).

The success of the ECOC technique depends on the minimal Hamming distance
between the class code words. Let d denote that distance, then up to r0 =

⌊
d−1
2

⌋
binary classification errors can be corrected by this technique: by definition of d,
even if r < r0 binary classifiers hl misclassify x ∈ X , h(x) is closest to the code
word of the correct class of x. For a fixed c, the design of error-correction matrix
M is subject to a trade-off, since larger d values may imply substantially more
difficult binary classification tasks. In practice, each column may correspond to a
class feature determined based on domain knowledge.

The ECOC technique just described can be extended in two ways. First, instead
of using only the label predicted by each classifier hl the magnitude of the scores
defining hl is used. Thus, if hl = sgn(fl) for some function fl whose values can
be interpreted as confidence scores, then the multi-class hypothesis h : X → Y is
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1 2 3 4 5 6
1 0 0 0 1 0 0
2 1 0 0 0 0 0
3 0 1 1 0 1 0
4 1 1 0 0 0 0
5 1 1 0 0 1 0
6 0 0 1 1 0 1
7 0 0 1 0 0 0
8 0 1 0 1 0 0

0 1 1 0 1 1
cl

as
se

s

codes

new example    x

f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

Figure 8.5 Illustration of error-correction codes for multi-class classification. Left:
binary code matrix M, with each row representing the code word of length c = 6

of a class l ∈ [1, 8]. Right: vector of predictions h(x) for a test point x. The ECOC
classifier assigns label 3 to x, since the binary code for the third class yields the
minimal Hamming distance with h(x) (distance of 1).

defined by

∀x ∈ X , h(x) = argmin
l∈Y

c∑
j=1

L(mljfj(x)), (8.19)

where (mlj) are the entries of M and where L : R → R+ is a loss function. When L

is defined by L(x) = 1−sgn(x)
2 for all x ∈ X and hl = fl, we can write:

c∑
j=1

L(mljfj(x)) =
c∑

j=1

1 − sgn(mljhj(x))
2

= dh(Ml,h(x)),

and (8.19) coincides with (8.18). Furthermore, ternary codes can be used with ma-
trix entries in {−1, 0, +1} so that examples in classes labeled with 0 are disregarded
when training a binary classifier for each column. With these extensions, both OVA
and OVO become special instances of the ECOC technique. The matrix M for
OVA is a square matrix, that is c = k, with all terms equal to −1 except from the
diagonal ones which are all equal to +1. The matrix M for OVO has c = k(k−1)/2
columns. Each column corresponds to a pair of distinct classes (l, l′), l �= l′, with
all entries equal to 0 except from the one with row l, which is −1, and the one with
row l′, which is +1.

Since the values of the scoring functions are assumed to be confidence scores,
mljfj(x) can be interpreted as the margin of classifier j on point x and (8.19) is
thus based on some loss L defined with respect to the binary classifier’s margin.

A further extension of ECOC consists of extending discrete codes to continuous
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ones by letting the matrix entries take arbitrary real values and by using the training
sample to learn matrix M. Starting with a discrete version of M, c binary classifiers
with scoring functions fl, l ∈ [1, c], are first learned as described previously. We will
denote by F(x) the vector (f1(x), . . . , fc(x))� for any x ∈ X . Next, the entries of
M are relaxed to take real values and learned from the training sample with the
objective of making the row of M corresponding to the class of any point x ∈ X
more similar to F(x) than other rows. The similarity can be measured using any
PDS kernel K. An example of an algorithm for learning M using a PDS kernel K

and the idea just discussed is in fact multi-class SVMs, which, in this context, can
be formulated as follows:

min
M,ξ

‖M‖2
F + C

m∑
i=1

ξi

subject to: ∀(i, l) ∈ [1,m] × Y,

K(f(xi),Myi
) ≥ K(f(xi),Ml) + 1 − ξi.

Similar algorithms can be defined using other matrix norms. The resulting multi-
class classification decision function has the following form:

h : x �→ argmax
l∈{1,...,k}

K(f(x),Ml).

8.5 Structured prediction algorithms

In this section, we briefly discuss an important class of problems related to multi-
class classification that frequently arises in computer vision, computational biology,
and natural language processing. These include all sequence labeling problems and
complex problems such as parsing, machine translation, and speech recognition.

In these applications, the output labels have a rich internal structure. For exam-
ple, in part-of-speech tagging the problem consists of assigning a part-of-speech tag
such as N (noun), V (verb), or A (adjective), to every word of a sentence. Thus, the
label of the sentence ω1 . . . ωn made of the words ωi is a sequence of part-of-speech
tags t1 . . . tn. This can be viewed as a multi-class classification problem where each
sequence of tags is a possible label. However, several critical aspects common to
such structured output problems make them distinct from the standard multi-class
classification.

First, the label set is exponentially large as a function of the size of the output.
For example, if Σ denotes the alphabet of part-of-speech tags, for a sentence of
length n there are |Σ|n possible tag sequences. Second, there are dependencies
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between the substructures of a label that are important to take into account for
an accurate prediction. For example, in part-of-speech tagging, some tag sequences
may be ungrammatical or unlikely. Finally, the loss function used is typically not a
zero-one loss but one that depends on the substructures. Let L : Y ×Y → R denote
a loss function such that L(y′, y) measures the penalty of predicting the label y′ ∈ Y
instead of the correct label y ∈ Y.3 In part-of-speech tagging, L(y′, y) could be for
example the Hamming distance between y′ and y.

The relevant features in structured output problems often depend on both the
input and the output. Thus, we will denote by Φ(x, y) ∈ R

N the feature vector
associated to a pair (x, y) ∈ X × Y.

To model the label structures and their dependency, the label set Y is typically
assumed to be endowed with a graphical model structure, that is, a graph giving a
probabilistic model of the conditional dependence between the substructures. It is
also assumed that both the feature vector Φ(x, y) associated to an input x ∈ X and
output y ∈ Y and the loss L(y′, y) factorize according to the cliques of that graphical
model.4 A detailed treatment of this topic would require a further background in
graphical models, and is thus beyond the scope of this section.

The hypothesis set used by most structured prediction algorithms is then defined
as the set of functions h : X → Y such that

∀x ∈ X , h(x) = argmax
y∈Y

w · Φ(x, y), (8.20)

for some vector w ∈ R
N . Let S = ((x1, y1), . . . , xm, ym)) ∈ (X × Y)m be an i.i.d.

labeled sample. Since the hypothesis set is linear, we can seek to define an algorithm
similar to multi-class SVMs. The optimization problem for multi-class SVMs can
be rewritten equivalently as follows:

min
w

1
2
‖w‖2+C

m∑
i=1

max
y �=yi

max
(
0, 1 − w · [Φ(xi, yi)−Φ(xi, y)]

)
, (8.21)

However, here we need to take into account the loss function L, that is L(y, yi) for
each i ∈ [1,m] and y ∈ Y, and there are multiple ways to proceed. One possible way
is to let the margin violation be penalized additively with L(y, yi). Thus, in that
case L(y, yi) is added to the margin violation. Another natural method consists of
penalizing the margin violation by multiplying it with L(y, yi). A margin violation
with a larger loss is then penalized more than one with a smaller one.

3. More generally, in some applications, the loss function could also depend on the input.
Thus, L is then a function mapping L : X × Y × Y → R, with L(x, y′, y) measuring the
penalty of predicting the label y′ instead of y given the input x.
4. In an undirected graph, a clique is a set of fully connected vertices.
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The additive penalization leads to the following algorithm known as Maximum
Margin Markov Networks (M3N):

min
w

1
2
‖w‖2+C

m∑
i=1

max
y �=yi

max
(
0, L(yi, y) − w · [Φ(xi, yi)−Φ(xi, y)]

)
. (8.22)

An advantage of this algorithm is that, as in the case of SVMs, it admits a natural
use of PDS kernels. As already indicated, the label set Y is assumed to be endowed
with a graph structure with a Markov property, typically a chain or a tree, and
the loss function is assumed to be decomposable in the same way. Under these
assumptions, by exploiting the graphical model structure of the labels, a polynomial-
time algorithm can be given to determine its solution.

A multiplicative combination of the loss with the margin leads to the following
algorithm known as SVMStruct :

min
w

1
2
‖w‖2+C

m∑
i=1

max
y �=yi

L(yi, y) max
(
0, 1 − w · [Φ(xi, yi)−Φ(xi, y)]

)
. (8.23)

This problem can be equivalently written as a QP with an infinite number of
constraints. In practice, it is solved iteratively by augmenting at each round the
finite set of constraints of the previous round with the most violating constraint.
This method can be applied in fact under very general assumptions and for arbitrary
loss definitions. As in the case of M3N, SVMStruct naturally admits the use of PDS
kernels and thus an extension to non-linear models for the solution.

Another standard algorithm for structured prediction problems is Conditional
Random Fields (CRFs). We will not describe this algorithm in detail, but point
out its similarity with the algorithms just described, in particular M3N. The
optimization problem for CRFs can be written as

min
w

1
2
‖w‖2+C

m∑
i=1

log
∑
y∈Y

exp
(
L(yi, y) − w · [Φ(xi, yi)−Φ(xi, y)]

)
. (8.24)

Assume for simplicity that Y is finite and has cardinality k and let f denote the
function (x1, . . . , xk) �→ log(

∑k
j=1 exj ). f is a convex function known as the soft-

max, since it provides a smooth approximation of (x1, . . . , xk) �→ max(x1, . . . , xk).
Then, problem (8.24) is similar to (8.22) modulo the replacement of the max
operator with the soft-max function just described.
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8.6 Chapter notes

The margin-based generalization for multi-class classification presented in theo-
rem 8.1 is based on an adaptation of the result and proof due to Koltchinskii and
Panchenko [2002]. Proposition 8.1 bounding the Rademacher complexity of multi-
class kernel-based hypotheses and corollary 8.1 are new.

An algorithm generalizing SVMs to the multi-class classification setting was first
introduced by Weston and Watkins [1999]. The optimization problem for that
algorithm was based on k(k − 1)/2 slack variables for a problem with k classes and
thus could be inefficient for a relatively large number of classes. A simplification of
that algorithm by replacing the sum of the slack variables

∑
j �=i ξij related to point

xi by its maximum ξi = maxj �=i ξij considerably reduces the number of variables
and leads to the multi-class SVM algorithm presented in this chapter [Crammer
and Singer, 2001, 2002].

The AdaBoost.MH algorithm is presented and discussed by Schapire and Singer
[1999, 2000]. As we showed in this chapter, the algorithm is a special instance
of AdaBoost. Another boosting-type algorithm for multi-class classification, Ad-
aBoost.MR, is presented by Schapire and Singer [1999, 2000]. That algorithm is
also a special instance of the RankBoost algorithm presented in chapter 9. See ex-
ercise 9.5 for a detailed analysis of this algorithm, including generalization bounds.

The most commonly used tools for learning decision trees are CART (classification
and regression tree) [Breiman et al., 1984] and C4.5 [Quinlan, 1986, 1993]. The
greedy technique we described for learning decision trees benefits in fact from an
interesting analysis: remarkably, it has been shown by Kearns and Mansour [1999],
Mansour and McAllester [1999] that, under a weak learner hypothesis assumption,
such decision tree algorithms produce a strong hypothesis. The grow-then-prune
method is from CART. It has been analyzed by a variety of different studies, in
particular by Kearns and Mansour [1998] and Mansour and McAllester [2000], who
give generalization bounds for the resulting decision trees with respect to the error
and size of the best sub-tree of the original tree pruned.

The idea of the ECOC framework for multi-class classification is due to Dietterich
and Bakiri [1995]. Allwein et al. [2000] further extended and analyzed this method
to margin-based losses, for which they presented a bound on the empirical error
and a generalization bound in the more specific case of boosting. While the OVA
technique is in general subject to a calibration issue and does not have any
justification, it is very commonly used in practice. Rifkin [2002] reports the results
of extensive experiments with several multi-class classification algorithms that are
rather favorable to the OVA technique, with performances often very close or better
than for those of several uncombined algorithms, unlike what has been claimed by
some authors (see also Rifkin and Klautau [2004]).
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The CRFs algorithm was introduced by Lafferty, McCallum, and Pereira [2001].
M3N is due to Taskar, Guestrin, and Koller [2003] and StructSVM was presented by
Tsochantaridis, Joachims, Hofmann, and Altun [2005]. An alternative technique for
tackling structured prediction as a regression problem was presented and analyzed
by Cortes, Mohri, and Weston [2007c].

8.7 Exercises

8.1 Generalization bounds for multi-label case. Use similar techniques to those used
in the proof of theorem 8.1 to derive a margin-based learning bound in the multi-
label case.

8.2 Multi-class classification with kernel-based hypotheses constrained by an Lp

norm. Use corollary 8.1 to define alternative multi-class classification algorithms
with kernel-based hypotheses constrained by an Lp norm with p �= 2. For which
value of p ≥ 1 is the bound of proposition 8.1 tightest? Derive the dual optimization
of the multi-class classification algorithm defined with p = ∞.

8.3 Alternative multi-class boosting algorithm. Consider the objective function
G defined for any sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and α =
(α1, . . . , αn) ∈ R

n, n ≥ 1, by

G(α) =
m∑

i=1

e−
1
k

Pk
l=1 yi[l]gn(xi,l) =

m∑
i=1

e−
1
k

Pk
l=1 yi[l]

Pn
t=1 αtht(xi,l). (8.25)

Use the convexity of the exponential function to compare G with the objective func-
tion F defining AdaBoost.MH. Show that G is a convex function upper bounding
the multi-label multi-class error. Discuss the properties of G and derive an algorithm
defined by the application of coordinate descent to G. Give theoretical guarantees
for the performance of the algorithm and analyze its running-time complexity when
using boosting stumps.

8.4 Multi-class algorithm based on RankBoost. This problem requires familiarity
with the material presented both in this chapter and in chapter 9. An alternative
boosting-type multi-class classification algorithm is one based on a ranking criterion.
We will define and examine that algorithm in the mono-label setting. Let H be a
family of base hypothesis mapping X × Y to {−1, +1}. Let F be the following
objective function defined for all samples S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m
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and α = (α1, . . . , αn) ∈ R
n, n ≥ 1, by

F (α) =
m∑

i=1

∑
l �=yi

e−(gn(xi,yi)−gn(xi,l)) =
m∑

i=1

∑
l �=yi

e−
Pn

t=1 αt(ht(xi,yi)−ht(xi,l)). (8.26)

where gn =
∑n

t=1 αtht.

(a) Show that F is convex and differentiable.

(b) Show that 1
m

∑m
i=1 1ρgn

(xi, yi) ≤ 1
k−1F (α), where gn =

∑n
t=1 αtht.

(c) Give the pseudocode of the algorithm obtained by applying coordinate
descent to F . The resulting algorithm is known as AdaBoost.MR. Show that
AdaBoost.MR exactly coincides with the RankBoost algorithm applied to the
problem of ranking pairs (x, y) ∈ X × Y. Describe exactly the ranking target
for these pairs.

(d) Use question (8.4b) and the learning bounds of this chapter to derive
margin-based generalization bounds for this algorithm.

(e) Use the connection of the algorithm with RankBoost and the learning
bounds of chapter 9 to derive alternative generalization bounds for this al-
gorithm. Compare these bounds with those of the previous question.

8.5 Decision trees. Show that VC-dimension of a binary decision tree with n nodes
in dimension N is in O(n log N).

8.6 Give an example where the generalization error of each of the k(k−1)/2 binary
classifiers hll′ , l �= l′, used in the definition of the OVO technique is r and that of
the OVO hypothesis (k − 1)r.
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The learning problem of ranking arises in many modern applications, including
the design of search engines, information extraction platforms, and movie recom-
mendation systems. In these applications, the ordering of the documents or movies
returned is a critical aspect of the system. The main motivation for ranking over
classification in the binary case is the limitation of resources: for very large data
sets, it may be impractical or even impossible to display or process all items labeled
as relevant by a classifier. A standard user of a search engine is not willing to con-
sult all the documents returned in response to a query, but only the top ten or so.
Similarly, a member of the fraud detection department of a credit card company
cannot investigate thousands of transactions classified as potentially fraudulent, but
only a few dozens of the most suspicious ones.

In this chapter, we study in depth the learning problem of ranking. We distinguish
two general settings for this problem: the score-based and the preference-based set-
tings. For the score-based setting, which is the most widely explored one, we present
margin-based generalization bounds using the notion of Rademacher complexity.
We then describe an SVM-based ranking algorithm that can be derived from these
bounds and describe and analyze RankBoost, a boosting algorithm for ranking.
We further study specifically the bipartite setting of the ranking problem where,
as in binary classification, each point belongs to one of two classes. We discuss an
efficient implementation of RankBoost in that setting and point out its connec-
tions with AdaBoost. We also introduce the notions of ROC curves and area under
the ROC curves (AUC) which are directly relevant to bipartite ranking. For the
preference-based setting, we present a series of results, in particular regret-based
guarantees for both a deterministic and a randomized algorithm, as well as a lower
bound in the deterministic case.

9.1 The problem of ranking

We first introduce the most commonly studied scenario of the ranking problem in
machine learning. We will refer to this scenario as the score-based setting of the
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ranking problem. In section 9.6, we present and analyze an alternative setting, the
preference-based setting .

The general supervised learning problem of ranking consists of using labeled
information to define an accurate ranking prediction function for all points. In the
scenario examined here, the labeled information is supplied only for pairs of points
and the quality of a predictor is similarly measured in terms of its average pairwise
misranking. The predictor is a real-valued function, a scoring function: the scores
assigned to input points by this function determine their ranking.

Let X denote the input space. We denote by D an unknown distribution over
X ×X according to which pairs of points are drawn and by f : X ×X → {−1, 0, +1}
a target labeling function or preference function. The three values assigned by f

are interpreted as follows: f(x, x′) = +1 if x′ is preferred to x or ranked higher
than x, f(x, x′) = −1 if x is preferred to x′, and f(x, x′) = 0 if both x and x′ have
the same preference or ranking, or if there is no information about their respective
ranking. This formulation corresponds to a deterministic scenario which we adopt
for simplification. As discussed in section 2.4.1, it can be straightforwardly extended
to a stochastic scenario where we have a distribution over X × X × {−1, 0, +1}.

Note that in general no particular assumption is made about the transitivity of the
order induced by f : we may have f(x, x′) = 1 and f(x′, x′′) = 1 but f(x, x”) = −1
for three points x, x′, and x′′. While this may contradict an intuitive notion of
preference, such preference orders are in fact commonly encountered in practice, in
particular when they are based on human judgments. This is sometimes because the
preference between two items are decided based on different features: for example,
an individual may prefer movie x′ to x because x′ is an action movie and x a
musical, and prefer x′′ to x′ because x′′ is an action movie with more active scenes
than x′. Nevertheless, he may prefer x to x′′ because the cost of renting a DVD
for x′′ is prohibitive. Thus, in this example, two features, the genre and the price,
are invoked, each affecting the decision for different pairs. In fact, in general, no
assumption is made about the preference function, not even the antisymmetry of
the order induced; thus, we may have f(x, x′) = 1 and f(x′, x) = 1 and yet x �= x′.

The learner receives a labeled sample S =
(
(x1, x

′
1, y1), . . . , (xm, x′

m, ym)
) ∈

X × X × {−1, 0, +1} with (x1, x
′
1), . . . , (xm, x′

m) drawn i.i.d. according to D and
yi = f(xi, x

′
i) for all i ∈ [1,m]. Given a hypothesis set H of functions mapping X to

R, the ranking problem consists of selecting a hypothesis h ∈ H with small expected
pairwise misranking or generalization error R(h) with respect to the target f :

R(h) = Pr
(x,x′)∼D

[(
f(x, x′) �= 0

) ∧ (f(x, x′)(h(x′) − h(x)) ≤ 0
)]

. (9.1)

The empirical pairwise misranking or empirical error of h is denoted by R̂(h) and
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defined by

R̂(h) =
1
m

m∑
i=1

1(yi �=0)∧(yi(h(x′
i)−h(xi))≤0) . (9.2)

Note that while the target preference function f is in general not transitive, the
linear ordering induced by a scoring function h ∈ H is by definition transitive. This
is a drawback of the score-based setting for the ranking problem since, regardless of
the complexity of the hypothesis set H, if the preference function is not transitive,
no hypothesis h ∈ H can faultlessly predict the target pairwise ranking.

9.2 Generalization bound

In this section, we present margin-based generalization bounds for ranking. To
simplify the presentation, we will assume for the results of this section that the
pairwise labels are in {−1, +1}. Thus, if a pair (x, x′) is drawn according to D, then
either x is preferred to x′ or the opposite. The learning bounds for the general case
have a very similar form but require more details. As in the case of classification,
for any ρ > 0, we can define the empirical margin loss of a hypothesis h for pairwise
ranking as

R̂ρ(h) =
1
m

m∑
i=1

Φρ(yi(h(x′
i) − h(xi)), (9.3)

where Φρ is the margin loss function (definition 4.3). Thus, the empirical margin
loss for ranking is upper bounded by the fraction of the pairs (xi, x

′
i) that h is

misranking or correctly ranking but with confidence less than ρ:

R̂ρ(h) ≤ 1
m

m∑
i=1

1yi(h(x′
i)−h(xi))≤ρ. (9.4)

We denote by D1 the marginal distribution of the first element of the pairs in X ×X
derived from D, and by D2 the marginal distribution with respect to the second
element of the pairs. Similarly, S1 is the sample derived from S by keeping only the
first element of each pair: S1 =

(
(x1, y1), . . . , (xm, ym)

)
and S2 the one obtained by

keeping only the second element: S2 =
(
(x′

1, y1), . . . , (x′
m, ym)

)
. We also denote by

RD1
m (H) the Rademacher complexity of H with respect to the marginal distribution

D1, that is RD1
m (H) = E[R̂S1(H)], and similarly RD2

m (H) = E[R̂S2(H)]. Clearly, if
the distribution D is symmetric, the marginal distributions D1 and D2 coincide and
RD1

m (H) = RD2
m (H).
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Theorem 9.1 Margin bound for ranking
Let H be a set of real-valued functions. Fix ρ > 0; then, for any δ > 0, with
probability at least 1 − δ over the choice of a sample S of size m, each of the
following holds for all h ∈ H:

R(h) ≤ R̂ρ(h) +
2
ρ

(
RD1

m (H) + RD2
m (H)

)
+

√
log 1

δ

2m
(9.5)

R(h) ≤ R̂ρ(h) +
2
ρ

(
R̂S1(H) + R̂S2(H)

)
+ 3

√
log 2

δ

2m
. (9.6)

Proof The proof is similar to that of theorem 4.4. Let H̃ be the family of
hypotheses mapping (X × X ) × {−1, +1} to R defined by H̃ = {z = ((x, x′), y) �→
y[h(x′) − h(x)] : h ∈ H}. Consider the family of functions H̃ = {Φρ ◦ f : f ∈ H̃}
derived from H̃ which are taking values in [0, 1]. By theorem 3.1, for any δ > 0 with
probability at least 1 − δ, for all h ∈ H,

E
[
Φρ(y[h(x′) − h(x)])

] ≤ R̂ρ(h) + 2Rm

(
Φρ ◦ H̃

)
+

√
log 1

δ

2m
.

Since 1u≤0 ≤ Φρ(u) for all u ∈ R, the generalization error R(h) is a lower bound
on left-hand side, R(h) = E[1y[h(x′)−h(x)]≤0] ≤ E

[
Φρ(y[h(x′) − h(x)])

]
, and we can

write:

R(h) ≤ R̂ρ(h) + 2Rm

(
Φρ ◦ H̃

)
+

√
log 1

δ

2m
.

Exactly as in the proof of theorem 4.4, we can show that Rm

(
Φρ ◦ H̃

) ≤ 1
ρRm(H̃)

using the (1/ρ)-Lipschitzness of Φρ. Here, Rm(H̃) can be upper bounded as follows:

Rm(H̃) =
1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σiyi(h(x′
i) − h(xi))

]
=

1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σi(h(x′
i) − h(xi))

]
(yiσi and σi: same distrib.)

≤ 1
m

E
S,σ

[
sup
h∈H

m∑
i=1

σih(x′
i) + sup

h∈H

m∑
i=1

σih(xi)
]

(by sub-additivity of sup)

= E
S

[
RS2(H) + RS1(H)

]
(definition of S1 and S2)

= RD2
m (H) + RD1

m (H) ,

which proves (9.5). The second inequality, (9.6), can be derived in the same way by
using the second inequality of theorem 3.1, (3.4), instead of (3.3).
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These bounds can be generalized to hold uniformly for all ρ > 0 at the cost of an
additional term

√
(log log2(2/ρ))/m, as in theorem 4.5 and exercise 4.2. As for other

margin bounds presented in previous sections, they show the conflict between two
terms: the larger the desired pairwise ranking margin ρ, the smaller the middle term.
However, the first term, the empirical pairwise ranking margin loss R̂ρ, increases as
a function of ρ.

Known upper bounds for the Rademacher complexity of a hypothesis H, including
bounds in terms of VC-dimension, can be used directly to make theorem 9.1 more
explicit. In particular, using theorem 9.1, we obtain immediately the following
margin bound for pairwise ranking using kernel-based hypotheses.

Corollary 9.1 Margin bounds for ranking with kernel-based hypotheses
Let K : X × X → R be a PDS kernel with r = supx∈X K(x, x). Let Φ: X → H be a
feature mapping associated to K and let H = {x �→ w · Φ(x) : ‖w‖H ≤ Λ} for some
Λ ≥ 0. Fix ρ > 0. Then, for any δ > 0, the following pairwise margin bound holds
with probability at least 1 − δ for any h ∈ H:

R(h) ≤ R̂ρ(h) + 4

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
. (9.7)

As with theorem 4.4, the bound of this corollary can be generalized to hold
uniformly for all ρ > 0 at the cost of an additional term

√
(log log2(2/ρ))/m. This

generalization bound for kernel-based hypotheses is remarkable, since it does not
depend directly on the dimension of the feature space, but only on the pairwise
ranking margin. It suggests that a small generalization error can be achieved when
ρ/r is large (small second term) while the empirical margin loss is relatively small
(first term). The latter occurs when few points are either classified incorrectly or
correctly but with margin less than ρ.

9.3 Ranking with SVMs

In this section, we discuss an algorithm that is derived directly from the theoretical
guarantees just presented. The algorithm turns out to be a special instance of the
SVM algorithm.

Proceeding as in section 4.4 for classification, the guarantee of corollary 9.1 can
be expressed as follows: for any δ > 0, with probability at least 1 − δ, for all
h ∈ H = {x �→ w · Φ(x) : ‖w‖ ≤ Λ},

R(h) ≤ 1
m

m∑
i=1

ξi + 4

√
r2Λ2

m
+

√
log 1

δ

2m
, (9.8)
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where ξi = max
(
1 − yi

[
w · (Φ(x′

i) − Φ(xi)
)]

, 0
)

for all i ∈ [1,m], and where
Φ : X → H is a feature mapping associated to a PDS kernel K. An algorithm based
on this theoretical guarantee consists of minimizing the right-hand side of (9.8),
that is minimizing an objective function with a term corresponding to the sum of
the slack variables ξi, and another one minimizing ‖w‖ or equivalently ‖w‖2. Its
optimization problem can thus be formulated as

min
w,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (9.9)

subject to: yi

[
w · (Φ(x′

i) − Φ(xi)
)] ≥ 1 − ξi

ξi ≥ 0, ∀i ∈ [1,m] .

This coincides exactly with the primal optimization problem of SVMs, with a feature
mapping Ψ : X ×X → H defined by Ψ(x, x′) = Φ(x′)−Φ(x) for all (x, x′) ∈ X ×X ,
and with a hypothesis set of functions of the form (x, x′) �→ w · Ψ(x, x′). Thus,
clearly, all the properties already presented for SVMs apply in this instance. In
particular, the algorithm can benefit from the use of PDS kernels. Problem (9.9)
admits an equivalent dual that can be expressed in terms of the kernel matrix K′

defined by

K′
ij = Ψ(xi, x

′
i) ·Ψ(xj , x

′
j) = K(xi, xj)+K(x′

i, x
′
j)−K(x′

i, xj)−K(xi, x
′
j), (9.10)

for all i, j ∈ [1,m]. This algorithm can provide an effective solution for pairwise
ranking in practice. The algorithm can also be used and extended to the case where
the labels are in {−1, 0, +1}. The next section presents an alternative algorithm for
ranking in the score-based setting.

9.4 RankBoost

This section presents a boosting algorithm for pairwise ranking, RankBoost , similar
to the AdaBoost algorithm for binary classification. RankBoost is based on ideas
analogous to those discussed for classification: it consists of combining different
base rankers to create a more accurate predictor. The base rankers are hypotheses
returned by a weak learning algorithm for ranking. As for classification, these
base hypotheses must satisfy a minimal accuracy condition that will be described
precisely later.

Let H denote the hypothesis set from which the base rankers are selected.
Algorithm 9.1 gives the pseudocode of the RankBoost algorithm when H is a set of
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RankBoost(S = ((x1, x
′
1, y1) . . . , (xm, x′

m, ym)))

1 for i ← 1 to m do

2 D1(i) ← 1
m

3 for t ← 1 to T do

4 ht ← base ranker in H with smallest ε−t − ε+t = − E
i∼Dt

[
yi

(
ht(x′

i) − ht(xi)
)]

5 αt ← 1
2 log ε+t

ε−t

6 Zt ← ε0t + 2[ε+t ε−t ]
1
2 � normalization factor

7 for i ← 1 to m do

8 Dt+1(i) ← Dt(i) exp
[
−αtyi

(
ht(x

′
i)−ht(xi)

)]
Zt

9 g ←∑T
t=1 αtht

10 return g

Figure 9.1 RankBoost algorithm for H ⊆ {0, 1}X .

functions mapping from X to {0, 1}. For any s ∈ {−1, 0, +1}, we define εs
t by

εs
t =

m∑
i=1

Dt(i)1yi(ht(x′
i)−ht(xi))=s = E

i∼Dt

[1yi(ht(x′
i)−ht(xi))=s], (9.11)

and simplify the notation ε+1
t into ε+t and similarly write ε−t instead of ε−1

t . With
these definitions, clearly the following equality holds: ε0t + ε+t + ε−t = 1.

The algorithm takes as input a labeled sample S =
(
(x1, x

′
1, y1), . . . , (xm, x′

m, ym)
)

with elements in X ×X ×{−1, 0, +1}, and maintains a distribution over the subset
of the indices i ∈ {1, . . . ,m} for which yi �= 0. To simplify the presentation, we will
assume that yi �= 0 for all i ∈ {1, . . . ,m} and consider distributions defined over
{1, . . . , m}. This can be guaranteed by simply first removing from the sample the
pairs labeled with zero.

Initially (lines 1–2), the distribution is uniform (D1). At each round of boosting,
that is at each iteration t ∈ [1, T ] of the loop 3–8, a new base ranker ht ∈ H is
selected with the smallest difference ε−t − ε+t , that is one with the smallest pairwise
misranking error and largest correct pairwise ranking accuracy for the distribution
Dt:

ht ∈ argmin
h∈H

{
− E

i∼Dt

[
yi

(
h(x′

i) − h(xi)
)]}

.

Note that ε−t − ε+t = ε−t − (1 − ε−t − ε0t ) = 2ε−t + ε0t − 1. Thus, finding the smallest
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difference ε−t −ε+t is equivalent to seeking the smallest 2ε−t +ε0t , which itself coincides
with seeking the smallest ε−t when ε0t = 0. Zt is simply a normalization factor to
ensure that the weights Dt+1(i) sum to one. RankBoost relies on the assumption
that at each round t ∈ [1, T ], for the hypothesis ht found, the inequality ε+t −ε−t > 0
holds; thus, the probability mass of the pairs correctly ranked by ht (ignoring pairs
with label zero) is larger than that of misranked pairs. We denote by γt the edge of
the base ranker ht: γt = ε+t −ε−t

2 .
The precise reason for the definition of the coefficient αt (line 5) will become

clear later. For now, observe that if ε+t − ε−t > 0, then ε+t /ε−t > 1 and αt > 0.
Thus, the new distribution Dt+1 is defined from Dt by increasing the weight on
i if the pair (xi, x

′
i) is misranked (yi(ht(x′

i) − ht(xi) < 0), and, on the contrary,
decreasing it if (xi, x

′
i) is ranked correctly (yi(ht(x′

i) − ht(xi) > 0). The relative
weight is unchanged for a pair with ht(x′

i) − ht(xi) = 0. This distribution update
has the effect of focusing more on misranked points at the next round of boosting.

After T rounds of boosting, the hypothesis returned by RankBoost is g, which is
a linear combination of the base classifiers ht. The weight αt assigned to ht in that
sum is a logarithmic function of the ratio of ε+t and ε−t . Thus, more accurate base
rankers are assigned a larger weight in that sum.

For any t ∈ [1, T ], we will denote by gt the linear combination of the base rankers
after t rounds of boosting: gt =

∑t
s=1 αtht. In particular, we have gT = g. The

distribution Dt+1 can be expressed in terms of gt and the normalization factors Zs,
s ∈ [1, t], as follows:

∀i ∈ [1,m], Dt+1(i) =
e−yi(gt(x

′
i))−gt(xi))

m
∏t

s=1 Zs

. (9.12)

We will make use of this identity several times in the proofs of the following sections.
It can be shown straightforwardly by repeatedly expanding the definition of the
distribution over the point xi:

Dt+1(i) =
Dt(i)e−αtyi(ht(x

′
i)−ht(xi))

Zt

=
Dt−1(i)e−αt−1yi(ht−1(x

′
i)−ht−1(xi))e−αtyi(ht(x

′
i)−ht(xi))

Zt−1Zt

=
e−yi

Pt
s=1 αs(hs(x′

i)−hs(xi))

m
∏t

s=1 Zs

.

9.4.1 Bound on the empirical error

We first show that the empirical error of RankBoost decreases exponentially fast
as a function of the number of rounds of boosting when the edge γt of each base
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ranker ht is lower bounded by some positive value γ > 0.

Theorem 9.2

The empirical error of the hypothesis h : X → {0, 1} returned by RankBoost verifies:

R̂(h) ≤ exp
[
− 2

T∑
t=1

(ε+t − ε−t
2

)2
]
. (9.13)

Furthermore, if there exists γ such that for all t ∈ [1, T ], 0 < γ ≤ ε+t −ε−t
2 , then

R̂(h) ≤ exp(−2γ2T ) . (9.14)

Proof Using the general inequality 1u≤0 ≤ exp(−u) valid for all u ∈ R and
identity 9.12, we can write:

R̂(h) =
1
m

m∑
i=1

1yi(g(x′
i)−g(xi))≤0 ≤ 1

m

m∑
i=1

e−yi(g(x′
i)−g(xi))

≤ 1
m

m∑
i=1

[
m

T∏
t=1

Zt

]
DT+1(i) =

T∏
t=1

Zt.

By the definition of normalization factor, for all t ∈ [1, T ], we have Zt =∑m
i=1 Dt(i)e−αtyi(ht(x

′
i)−ht(xi)). By grouping together the indices i for which

yi(ht(x′
i) − ht(xi)) takes the values in +1, −1, or 0, Zt can be rewritten as

Zt = ε+t e−αt + ε−t eαt + ε0t = ε+t

√
ε−t
ε+t

+ ε−t

√
ε+t
ε−t

+ ε0t = 2
√

ε+t ε−t + ε0t .

Since ε+t = 1 − ε−t − ε0t , we have

4ε+t ε−t = (ε+t + ε−t )2 − (ε+t − ε−t )2 = (1 − ε0t )
2 − (ε+t − ε−t )2.

Thus, assuming that ε0t < 1, Zt can be upper bounded as follows:

Zt =
√

(1 − ε0t )2 − (ε+t − ε−t )2 + ε0t

= (1 − ε0t )

√
1 − (ε+t − ε−t )2

(1 − ε0t )2
+ ε0t

≤ (1 − ε0t ) exp
(
− (ε+t − ε−t )2

2(1 − ε0t )2

)
+ ε0t

≤ exp
(
− (ε+t − ε−t )2

2(1 − ε0t )

)
≤ exp

(
− (ε+t − ε−t )2

2

)
≤ exp

(−2[(ε+t − ε−t )/2]2
)
,

where we used for the first inequality the identity 1 − x ≤ e−x valid for all x ∈ R
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and for the second inequality the convexity of the exponential function and the fact
that 0 < 1 − ε0t ≤ 1. This upper bound on Zt also trivially holds when ε0t = 1 since
in that case ε+t = ε−t = 0. This concludes the proof.

As can be seen from the proof of the theorem, the weak ranking assumption
γ ≤ ε+t −ε−t

2 with γ > 0 can be replaced with the somewhat weaker requirement
γ ≤ ε+t −ε−t

2
√

1−ε0t
, with ε0t �= 1, which can be rewritten as γ ≤ 1

2
ε+t −ε−t√
ε+t +ε−t

, with ε+t +ε−t �= 0,

where the quantity ε+t −ε−t√
ε+t +ε−t

can be interpreted as a (normalized) relative difference

between ε+t and ε−t .
The proof of the theorem also shows that the coefficient αt is selected to minimize

Zt. Thus, overall, these coefficients are chosen to minimize the upper bound on
the empirical error

∏T
t=1 Zt, as for AdaBoost. The RankBoost algorithm can be

generalized in several ways:

instead of a hypothesis with minimal difference ε−t − ε+t , ht can be more generally
a base ranker returned by a weak ranking algorithm trained on Dt with ε+t > ε−t ;

the range of the base rankers could be [0, +1], or more generally R. The coefficients
αt can then be different and may not even admit a closed form. However, in general,
they are chosen to minimize the upper bound

∏T
t=1 Zt on the empirical error.

9.4.2 Relationship with coordinate descent

RankBoost coincides with the application of the coordinate descent technique
to a convex and differentiable objective function F defined for all samples S =(
(x1, x

′
1, y1), . . . , (xm, x′

m, ym)
) ∈ X × X × {−1, 0, +1} and α = (α1, . . . , αn) ∈ R

n,
n ≥ 1 by

F (α) =
m∑

i=1

e−yi[gn(x′
i)−gn(xi)] =

m∑
i=1

e−yi
Pn

t=1 αt[ht(x
′
i)−ht(xi)] , (9.15)

where gn =
∑n

t=1 αtht. This loss function is a convex upper bound on the zero-one
pairwise loss function α �→ ∑m

i=1 1yi[gn(x′
i)−gn(xi)]≤0, which is not convex. Let et

denote the unit vector corresponding to the tth coordinate in R
n and let αt−1 denote

the vector based on the (t−1) first coefficients, i.e. αt−1 = (α1, . . . , αt−1, 0, . . . , 0)�

if t − 1 > 0, αt−1 = 0 otherwise. At each iteration t ≥ 1, the direction et selected
by coordinate descent is the one minimizing the directional derivative:

et = argmin
t

dF (αt−1 + ηet)
dη

∣∣∣∣
η=0

.
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Since F (αt−1 + ηet) =
∑m

i=1 e−yi
Pt−1

s=1 αs(hs(x′
i)−hs(xi))−ηyi(ht(x

′
i)−ht(xi)), the direc-

tional derivative along et can be expressed as follows:

dF (αt−1 + ηet)
dη

∣∣∣∣
η=0

= −
m∑

i=1

yi(ht(x′
i) − ht(xi)) exp

[
− yi

t−1∑
s=1

αs(hs(x′
i) − hs(xi))

]
= −

m∑
i=1

yi(ht(x′
i) − ht(xi))Dt(i)

[
m

t−1∏
s=1

Zs

]
= −

[ m∑
i=1

Dt(i)1yi(ht(x′
i)−ht(xi))=+1 −

m∑
i=1

Dt(i)1yi(ht(x′
i)−ht(xi))=−1

][
m

t−1∏
s=1

Zs

]
= −[ε+t − ε−t ]

[
m

t−1∏
s=1

Zs

]
.

The first equality holds by differentiation and evaluation at η = 0 and the second
one follows from (9.12). In view of the final equality, since m

∏t−1
s=1 Zs is fixed,

the direction et selected by coordinate descent is the one minimizing εt, which
corresponds exactly to the base ranker ht selected by RankBoost.

The step size η is identified by setting the derivative to zero in order to minimize
the function in the chosen direction et. Thus, using identity 9.12 and the definition
of εt, we can write:

dF (αt−1 + ηet)
dη

= 0

⇔ −
m∑

i=1

yi(ht(x′
i) − ht(xi))e−yi

Pt−1
s=1 αs(hs(x′

i)−hs(xi))e−ηyi(ht(x
′
i)−ht(xi)) = 0

⇔ −
m∑

i=1

yi(ht(x′
i) − ht(xi))Dt(i)

[
m

t−1∏
s=1

Zs

]
e−ηyi(ht(x

′
i)−ht(xi)) = 0

⇔ −
m∑

i=1

yi(ht(x′
i) − ht(xi))Dt(i)e−ηyi(ht(x

′
i)−ht(xi)) = 0

⇔ −[ε+t e−η − ε−t eη] = 0

⇔ η =
1
2

log
ε+t
ε−t

.

This proves that the step size chosen by coordinate descent matches the base
ranker weight αt of RankBoost. Thus, coordinate descent applied to F precisely
coincides with the RankBoost algorithm. As in the classification case, other convex
loss functions upper bounding the zero-one pairwise misranking loss can be used.
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In particular, the following objective function based on the logistic loss can be
used: α �→ ∑m

i=1 log(1 + e−yi[gn(x′
i)−gn(xi)]) to derive an alternative boosting-type

algorithm.

9.4.3 Margin bound for ensemble methods in ranking

To simplify the presentation, we will assume for the results of this section, as
in section 9.2, that the pairwise labels are in {−1, +1}. By theorem 6.2, the
empirical Rademacher complexity of the convex hull conv(H) equals that of H.
Thus, theorem 9.1 immediately implies the following guarantee for ensembles of
hypotheses in ranking.

Corollary 9.2

Let H be a set of real-valued functions. Fix ρ > 0; then, for any δ > 0, with
probability at least 1 − δ over the choice of a sample S of size m, each of the
following ranking guarantees holds for all h ∈ conv(H):

R(h) ≤ R̂ρ(h) +
2
ρ

(
RD1

m (H) + RD2
m (H)

)
+

√
log 1

δ

2m
(9.16)

R(h) ≤ R̂ρ(h) +
2
ρ

(
R̂S1(H) + R̂S2(H)

)
+ 3

√
log 2

δ

2m
. (9.17)

For RankBoost, these bounds apply to g/‖α‖1, where g is the hypothesis returned
by the algorithm. Since g and g/‖α‖1 induce the same ordering of the points, for
any δ > 0, the following holds with probability at least 1 − δ:

R(g) ≤ R̂ρ(g/‖α‖1) +
2
ρ

(
RD1

m (H) + RD2
m (H)

)
+

√
log 1

δ

2m
(9.18)

Remarkably, the number of rounds of boosting T does not appear in this bound.
The bound depends only on the margin ρ, the sample size m, and the Rademacher
complexity of the family of base classifiers H. Thus, the bound guarantees an effec-
tive generalization if the pairwise margin loss R̂ρ(g/‖α‖1) is small for a relatively
large ρ. A bound similar to that of theorem 6.3 for AdaBoost can be derived for the
empirical pairwise ranking margin loss of RankBoost (see exercise 9.3) and similar
comments on that result apply here.

These results provide a margin-based analysis in support of ensemble methods
in ranking and RankBoost in particular. As in the case of AdaBoost, however,
RankBoost in general does not achieve a maximum margin. But, in practice, it has
been observed to obtain excellent pairwise ranking performances.
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9.5 Bipartite ranking

This section examines an important ranking scenario within the score-based setting,
the bipartite ranking problem. In this scenario, the set of points X is partitioned
into two classes: X+ the class of positive points, and X− that of negative ones. The
problem consists of ranking positive points higher than negative ones. For example,
for a fixed search engine query, the task consists of ranking relevant (positive)
documents higher than irrelevant (negative) ones.

The bipartite problem could be treated in the way already discussed in the
previous sections with exactly the same theory and algorithms. However, the setup
typically adopted for this problem is different: instead of assuming that the learner
receives a sample of random pairs, here pairs of positive and negative elements, it
is assumed that he receives a sample of positive points from some distribution and
a sample of negative points from another. This leads to the set of all pairs made of
a positive point of the first sample and a negative point of the second.

More formally, the learner receives a sample S+ = (x′
1, . . . , x

′
m) drawn i.i.d.

according to some distribution D+ over X+, and a sample S− = (x1, . . . , xn) drawn
i.i.d. according to some distribution D− over X−.1 Given a hypothesis set H of
functions mapping X to R, the learning problem consists of selecting a hypothesis
h ∈ H with small expected bipartite misranking or generalization error R(h):

R(h) = Pr
x∼D−
x′∼D+

[h(x′) < h(x)] . (9.19)

The empirical pairwise misranking or empirical error of h is denoted by R̂(h) and
defined by

R̂(h) =
1

mn

m∑
i=1

n∑
j=1

1h(x′
i)<h(xj) . (9.20)

Note that while the bipartite ranking problem bears some similarity with binary
classification, in particular, the presence of two classes, they are distinct problems,
since their objectives and measures of success clearly differ.

1. This two-distribution formulation also avoids a potential dependency issue that can
arise for some modeling of the problem: if pairs are drawn according to some distribution
D over X− × X+ and the learner makes use of this information to augment his training
sample, then the resulting sample is in general not i.i.d. This is because if (x1, x

′
1) and

(x2, x
′
2) are in the sample, then so are the pairs (x1, x

′
2) and (x2, x

′
1) and thus the pairs are

not independent. However, without sample augmentation, the points are i.i.d., and this
issue does not arise.
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By the definition of the formulation of the bipartite ranking just presented, the
learning algorithm must typically deal with mn pairs. For example, the application
of SVMs to ranking in this scenario leads to an optimization with mn slack variables
or constraints. With just a thousand positive and a thousand negative points,
one million pairs would need to be considered. This can lead to a prohibitive
computational cost for some learning algorithms. The next section shows that
RankBoost admits an efficient implementation in the bipartite scenario.

9.5.1 Boosting in bipartite ranking

This section shows the efficiency of RankBoost in the bipartite scenario and dis-
cusses the connection between AdaBoost and RankBoost in this context.

The key property of RankBoost leading to an efficient algorithm in the bipartite
setting is the fact that its objective function is based on the exponential function.
As a result, it can be decomposed into the product of two functions, one depending
on only the positive and the other on only the negative points. Similarly, the
distribution Dt maintained by the algorithm can be factored as the product of
two distributions D+

t and D−
t . This is clear for the uniform distribution D1 at the

first round as for any i ∈ [1,m] and j ∈ [1, n], D1(i, j) = 1/(mn) = D+
1 (i)D−

1 (j)
with D+

1 (i) = 1/m and D−
1 (j) = 1/n. This property is recursively preserved since,

in view of the following, the decomposition of Dt implies that of Dt+1 for any
t ∈ [1, T ]. For any i ∈ [1,m] and j ∈ [1, n], by definition of the update, we can
write:

Dt+1(i, j) =
Dt(i, j)e−αt[ht(x

′
i)−ht(xj)]

Zt
=

D+
t (i)e−αtht(x

′
i)

Zt,+

D−
t (j)eαtht(xj)

Zt,−
,

since the normalization factor Zt can also be decomposed as Zt = Z−
t Z+

t , with
Z+

t =
∑m

i=1 D+
t (i)e−αtht(x

′
i) and Z−

t =
∑n

j=1 D−
t (j)eαtht(xj). Furthermore, the

pairwise misranking of a hypothesis h ∈ H based on the distribution Dt used to
determine ht can also be computed as the difference of two quantities, one depending
only on positive points, the other only on negative ones:

E
(i,j)∼Dt

[h(x′
i) − h(xj)] = E

i∼D+
t

[ E
j∼D−

t

[h(x′
i) − h(xj)]] = E

i∼D+
t

[h(x′
i)] − E

j∼D−
t

[h(xj)].

Thus, the time and space complexity of RankBoost depends only on the total
number of points m+n and not the number of pairs mn. More specifically, ignoring
the call to the weak ranker or the cost of determining ht, the time and space
complexity of each round is linear, that is, in O(m + n). Furthermore, the cost of
determining ht depends only on O(m + n) and not on O(mn). Figure 9.2 gives the
pseudocode of the algorithm adapted to the bipartite scenario.

In the bipartite scenario, a connection can be made between the classification algo-
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BipartiteRankBoost(S = (x′
1, . . . , x

′
m, x1, . . . , xn))

1 for j ← 1 to m do

2 D+
1 (j) ← 1

m

3 for i ← 1 to n do

4 D−
1 (i) ← 1

n

5 for t ← 1 to T do

6 ht ← base ranker in H with smallest ε−t − ε+t = E
j∼D−

t

[h(xj)] − E
i∼D+

t

[h(x′
i)]

7 αt ← 1
2 log ε+t

ε−t

8 Z+
t ← 1 − ε+t +

√
ε+t ε−t

9 for i ← 1 to m do

10 D+
t+1(i) ← D+

t (i) exp
[
−αtht(x

′
i)
]

Z+
t

11 Z−
t ← 1 − ε−t +

√
ε+t ε−t

12 for j ← 1 to n do

13 D−
t+1(j) ← D−

t (j) exp
[
+αtht(xj)

]
Zt

14 g ←∑T
t=1 αtht

15 return g

Figure 9.2 Pseudocode of RankBoost in a bipartite setting, with H ⊆ {0, 1}X ,
ε+t = E

i∼D+
t

[h(x′
i)] and ε−t = E

j∼D−
t

[h(xj)].

rithm AdaBoost and the ranking algorithm RankBoost. In particular, the objective
function of RankBoost can be expressed as follows for any α = (α1, . . . , αT ) ∈ R

T ,
T ≥ 1:

FRankBoost(α) =
m∑

j=1

n∑
i=1

exp(−[g(x′
i) − g(xj)])

=
( m∑

i=1

e−
PT

t=1 αtht(x
′
i)
)( n∑

j=1

e+
PT

t=1 αtht(xj)
)

= F+(α)F−(α),

where F+ denotes the function defined by the sum over the positive points and F−
the function defined over the negative points. The objective function of AdaBoost
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can be defined in terms of these same two functions as follows:

FAdaBoost(α) =
m∑

i=1

exp(−y′
ig(x′

i)) +
n∑

j=1

exp(−yjg(xj))

=
m∑

i=1

e−
PT

t=1 αtht(x
′
i) +

n∑
j=1

e+
PT

t=1 αtht(xj)

= F+(α) + F−(α).

Note that the gradient of the objective function of RankBoost can be expressed in
terms of AdaBoost as follows:

∇αFRankBoost(α) = F−(α)∇αF+(α) + F+(α)∇αF−(α) (9.21)

= F−(α)(∇αF+(α) + ∇αF−(α)) + (F+(α) − F−(α))∇αF−(α)

= F−(α)∇αFAdaBoost(α) + (F+(α) − F−(α))∇αF−(α).

If α is a minimizer of FAdaBoost, then ∇αFAdaBoost(α) = 0 and it can be shown that
the equality F+(α) − F−(α) = 0 also holds for α, provided that the family of base
hypotheses H used for AdaBoost includes the constant hypothesis h0 : x �→ 1, which
often is the case in practice. Then, by (9.21), this implies that ∇αFRankBoost(α) = 0
and therefore that α is also a minimizer of the convex function FRankBoost. In
general, FAdaBoost does not admit a minimizer. Nevertheless, it can be shown that
if limk→∞ FAdaBoost(αk) = infα FAdaBoost(α) for some sequence (αk)k∈N, then,
under the same assumption on the use of a constant base hypothesis and for
a non-linearly separable dataset, the following holds: limk→∞ FRankBoost(αk) =
infα FRankBoost(α).

The connections between AdaBoost and RankBoost just mentioned suggest that
AdaBoost could achieve a good ranking performance as well. This is often observed
empirically, a fact that brings strong support to the use of AdaBoost both as a
classifier and a ranking algorithm. Nevertheless, RankBoost may converge faster
and achieve a good ranking faster than AdaBoost.

9.5.2 Area under the ROC curve

The performance of a bipartite ranking algorithm is typically reported in terms of
the area under the receiver operating characteristic (ROC) curve, or the area under
the curve (AUC ) for short.

Let U be a test sample used to evaluate the performance of h (or a training
sample) with m positive points z′1, . . . , z

′
m and n negative points z1, . . . , zn. For any

h ∈ H, let R̂(h, U) denote the average pairwise misranking of h over U . Then, the
AUC of h for the sample U is precisely 1 − R̂(h, U), that is, its average pairwise
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Figure 9.3 The AUC (area under the ROC curve) is a measure of the performance
of a bipartite ranking.

ranking accuracy on U :

AUC(h, U) =
1

mn

m∑
i=1

n∑
j=1

1h(z′
i)≥h(zj) = Pr

z∼ bD−
U

z′∼ bD+
U

[h(z′) ≥ h(z)].

Here, D̂+
U denotes the empirical distribution corresponding to the positive points in

U and D̂+
U the empirical distribution corresponding to the negative ones. AUC(h, U)

is thus an empirical estimate of the pairwise ranking accuracy based on the sample
U , and by definition it is in [0, 1]. Higher AUC values correspond to a better ranking
performance. In particular, an AUC of one indicates that the points of U are ranked
perfectly using h. AUC(h, U) can be computed in linear time from a sorted array
containing the m+n elements h(z′i) and h(zj), for i ∈ [1,m] and j ∈ [1, n]. Assuming
that the array is sorted in increasing order (with a positive point placed higher than a
negative one if they both have the same scores) the total number of correctly ranked
pairs r can be computed as follows. Starting with r = 0, the array is inspected in
increasing order of the indices while maintaining at any time the number of negative
points seen n and incrementing the current value of r with n whenever a positive
point is found. After full inspection of the array, the AUC is given by r/(mn). Thus,
assuming that a comparison-based sorting algorithm is used, the complexity of the
computation of the AUC is in O((m + n) log(m + n)).

As indicated by its name, the AUC coincides with the area under the ROC curve
(figure 9.3). An ROC curve plots the true positive rate, that is, the percentage of
positive points correctly predicted as positive as a function of the false positive
rate, that is, the percentage of negative points incorrectly predicted as positive.
Figure 9.4 illustrates the definition and construction of an ROC curve.
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Figure 9.4 An example ROC curve and illustrated threshold. Varying the value
of θ from one extreme to the other generates points on the curve.

Points are generated along the curve by varying a threshold value θ as in the
right panel of figure 9.4, from higher values to lower ones. The threshold is used to
determine the label of any point x (positive or negative) based on sgn(h(x) − θ).
At one extreme, all points are predicted as negative; thus, the false positive rate is
zero, but the true positive rate is zero as well. This gives the first point (0, 0) of
the plot. At the other extreme, all points are predicted as positive; thus, both the
true and the false positive rates are equal to one, which gives the point (1, 1). In
the ideal case, as already discussed, the AUC value is one, and, with the exception
of (0, 0), the curve coincides with a horizontal line reaching (1, 1).

9.6 Preference-based setting

This section examines a different setting for the problem of learning to rank: the
preference-based setting . In this setting, the objective is to rank as accurately as
possible any test subset X ⊆ X , typically a finite set that we refer to as a finite query
subset . This is close to the query-based scenario of search engines or information
extraction systems and the terminology stems from the fact that X could be a
set of items needed to rank in response to a particular query. The advantage of
this setting over the score-based setting is that here the learning algorithm is not
required to return a linear ordering of all points of X , which may be impossible
to achieve faultlessly in accordance with a general possibly non-transitive pairwise
preference labeling. Supplying a correct linear ordering for a query subset is more
likely to be achievable exactly or at least with a better approximation.

The preference-based setting consists of two stages. In the first stage, a sample of
labeled pairs S, exactly as in the score-based setting, is used to learn a preference
function h : X × X �→ [0, 1], that is, a function that assigns a higher value to a
pair (u, v) when u is preferred to v or is to be ranked higher than v, and smaller
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values in the opposite case. This preference function can be obtained as the output
of a standard classification algorithm trained on S. A crucial difference with the
score-based setting is that, in general, the preference function h is not required to
induce a linear ordering. The relation it induces may be non-transitive; thus, we
may have, for example, h(u, v) = h(v, w) = h(w, u) = 1 for three distinct points u,
v, and w.

In the second stage, given a query subset X ∈ X , the preference function h is used
to determine a ranking of X. How can h be used to generate an accurate ranking?
This will be the main focus of this section. The computational complexity of the
algorithm determining the ranking is also crucial. Here, we will measure its running
time complexity in terms of the number of calls to h.

When the preference function is obtained as the output of a binary classification
algorithm, the preference-based setting can be viewed as a reduction of ranking to
classification: the second stage specifies how a ranking is obtained from a classifier’s
output.

9.6.1 Second-stage ranking problem

The ranking problem of the second stage is modeled as follows. We assume that a
preference function h is given. From the point of view of this stage, the way the
function h has been determined is immaterial, it can be viewed as a black box. As
already discussed, h is not assumed to be transitive. But, we will assume that it is
pairwise consistent , that is h(u, v) + h(v, u) = 1, for all u, v ∈ X .

Let D be an unknown distribution according to which pairs (X, σ∗) are drawn
where X ⊆ X is a query subset and σ∗ a target ranking or permutation of X,
that is, a bijective function from X to {1, . . . , |X|}. Thus, we consider a stochastic
scenario, and σ∗ is a random variable. The objective of a second-stage algorithm A
consists of using the preference function h to return an accurate ranking A(X) for
any query subset X. The algorithm may be deterministic, in which case A(X) is
uniquely determined from X or it may be randomized, in which case we denote by
s the randomization seed it may depend on.

The following loss function L can be used to measure the disagreement between
a ranking σ and a desired one σ∗ over a set X of n ≥ 1 elements:

L(σ, σ∗) =
2

n(n − 1)

∑
u �=v

1σ(u)<σ(v)1σ∗(v)<σ∗(u), (9.22)

where the sum runs over all pairs (u, v) with u and v distinct elements of X. All the
results presented in the following hold for a broader set of loss functions described
later. Abusing the notation, we also define the loss of the preference function h with
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respect to a ranking σ∗ of a set X of n ≥ 1 elements by

L(h, σ∗) =
2

n(n − 1)

∑
u �=v

h(u, v)1σ∗(v)<σ∗(u). (9.23)

The expected loss for a deterministic algorithm A is thus E(X,σ∗)∼D[L(A(X), σ∗)].
The regret of algorithm A is then defined as the difference between its loss and that
of the best fixed global ranking. This can be written as follows:

Reg(A) = E
(X,σ∗)∼D

[L(A(X), σ∗)] − min
σ′

E
(X,σ∗)∼D

[L(σ′
|X , σ∗)] , (9.24)

where σ′
|X denotes the ranking induced on X by a global ranking σ′ of X . Similarly,

we define the regret of the preference function as follows

Reg(h) = E
(X,σ∗)∼D

[L(h|X , σ∗)] − min
h′

E
(X,σ∗)∼D

[L(h′
|X , σ∗)] , (9.25)

where h|X denotes the restriction of h to X × X, and similarly with h′. The regret
results presented in this section hold assuming the following pairwise independence
on irrelevant alternatives property:

E
σ∗|X1

[1σ∗(v)<σ∗(u)] = E
σ∗|X2

[1σ∗(v)<σ∗(u)], (9.26)

for any u, v ∈ X and any two sets X1 and X2 containing u and v.2 Similar
regret definitions can be given for a randomized algorithm additionally taking the
expectation over s.

Clearly, the quality of the ranking output by the second-stage algorithm inti-
mately depends on that of the preference function h. In the next sections, we discuss
both a deterministic and a randomized second-stage algorithm for which the regret
can be upper bounded in terms of the regret of the preference function.

2. More generally, they hold without that assumption using the following weaker notions
of regret:

Reg′(A) = E
(X,σ∗)∼D

[L(A(X), σ∗)]− E
X

h
min

σ′ E
σ∗|X

[L(σ′, σ∗)]
i

(9.27)

Reg′(h) = E
(X,σ∗)∼D

[L(h|X , σ∗)]− E
X

h
min

h′ E
σ∗|X

[L(h′, σ∗)]
i
, (9.28)

where σ′ denotes a ranking of X, h′ a preference function defined over X ×X, and σ∗|X
the random variable σ∗ conditioned on X.
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9.6.2 Deterministic algorithm

A natural deterministic algorithm for the second-stage is based on the sort-by-degree
algorithm. This consists of ranking each element of X based on the number of other
elements it is preferred to according to the preference function h. Let Asort-by-degree

denote this algorithm. In the bipartite setting, the following bounds can be proven
for the expected loss of this algorithm and its regret:

E
X,σ∗

[L(Asort-by-degree(X), σ∗)] ≤ 2 E
X,σ∗

[L(h, σ∗)] (9.29)

Reg(Asort-by-degree(X)) ≤ 2 Reg(h) . (9.30)

These results show that the sort-by-degree algorithm can achieve an accurate
ranking when the loss or the regret of the preference function h is small. They
also bound the ranking loss or regret of the algorithm in terms of the classification
loss or regret of h, which can be viewed as a guarantee for the reduction of ranking
to classification using the sort-by-degree algorithm.

Nevertheless, in some cases, the guarantee given by these results is weak or unin-
formative owing to the presence of the factor of two. Consider the case of a binary
classifier h with an error rate of just 25 percent, which is quite reasonable in many
applications. Assume that the Bayes error is close to zero for the classification prob-
lem and, similarly, that for the ranking problem the regret and loss approximately
coincide. Then, using the bound in (9.29) guarantees a worst-case pairwise mis-
ranking error of at most 50 percent for the ranking algorithm, which is the pairwise
misranking error of random ranking.

Furthermore, the running time complexity of the algorithm quadratic, that is in
Ω(|X|2) of a query set X, since it requires calling the preference function for every
pair (u, v) with u and v in X.

As shown by the following theorem, no deterministic algorithm can improve upon
the factor of two appearing in the regret guarantee of the sort-by-degree algorithm.

Theorem 9.3 Lower bound for deterministic algorithms
For any deterministic algorithm A, there is a bipartite distribution for which

Reg(A) ≥ 2 Reg(h). (9.31)

Proof Consider the simple case where X = X = {u, v, w} and where the
preference function induces a cycle as illustrated by figure 9.5a. An arrow from
u to v indicates that v is preferred to u according to h. The proof is based on an
adversarial choice of the target σ∗.

Without loss of generality, either A returns the ranking u, v, w (figure 9.5b) or
w, v, u (figure 9.5c). In the first case, let σ∗ be defined by the labeling indicated in
the figure. In that case, we have L(h, σ∗) = 1/3, since u is preferred to w according
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Figure 9.5 Illustration of the proof of theorem 9.3.

to h while w is labeled positively and u negatively. The loss of the algorithm is
L(A, σ∗) = 2/3, since both u and v are ranked higher than the positively labeled w

by the algorithm. Similarly, σ∗ can be defined as in figure 9.5c in the second case,
and we find again that L(h, σ∗) = 1/3 and L(A, σ∗) = 2/3. This concludes the
proof.

The theorem suggests that randomization is necessary in order to achieve a better
guarantee. In the next section, we present a randomized algorithm that benefits
both from better guarantees and a better time complexity.

9.6.3 Randomized algorithm

The general idea of the algorithm described in this section is to use a straightforward
extension of the randomized QuickSort algorithm in the second stage. Unlike in
the standard version of QuickSort , here the comparison function is based on the
preference function, which in general is not transitive. Nevertheless, it can be shown
here, too, that the expected time complexity of the algorithm is in O(n log n) when
applied to an array of size n.

The algorithm works as follows, as illustrated by figure 9.6. At each recursive
step, a pivot element u is selected uniformly at random from X. For each v �= u, v

is placed on the left of u with probability h(v, u) and to its right with the remaining
probability h(u, v). The algorithm proceeds recursively with the array to the left of
u and the one to its right and returns the concatenation of the permutation returned
by the left recursion, u, and the permutation returned by the right recursion.

Let AQuickSort denote this algorithm. In the bipartite setting, the following
guarantees can be proven:

E
X,σ∗,s

[L(AQuickSort(X, s), σ∗)] = E
X,σ∗

[L(h, σ∗)] (9.32)

Reg(AQuickSort) ≤ Reg(h) . (9.33)

Thus, here, the factor of two of the bounds in the deterministic case has vanished,
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Figure 9.6 Illustration of randomized QuickSort based on a preference function h

(not necessarily transitive).

which is substantially more favorable. Furthermore, the guarantee for the loss is
an equality. Moreover, the expected time complexity of the algorithm is only in
O(n log n), and, if only the top k items are needed to be ranked, as in many
applications, the time complexity is reduced to O(n + k log k).

For the QuickSort algorithm, the following guarantee can also be proven in the
case of general ranking setting (not necessarily bipartite setting):

E
X,σ∗,s

[L(AQuickSort(X, s), σ∗)] ≤ 2 E
X,σ∗

[L(h, σ∗)]. (9.34)

9.6.4 Extension to other loss functions

All of the results just presented hold for a broader class of loss functions Lω defined
in terms of a weight function or emphasis function ω. Lω is similar to (9.22), but
measures the weighted disagreement between a ranking σ and a desired one σ∗ over
a set X of n ≥ 1 elements as follows:

Lω(σ, σ∗) =
2

n(n − 1)

∑
u �=v

ω(σ∗(v), σ∗(u)) 1σ(u)<σ(v) 1σ∗(v)<σ∗(u), (9.35)

where the sum runs over all pairs (u, v) with u and v distinct elements of X, and
where ω is a symmetric function whose properties are described below. Thus, the loss
counts the number of pairwise misrankings of σ with respect to σ∗, each weighted
by ω. Function ω is assumed to satisfy the following three natural axioms:

symmetry: ω(i, j) = ω(j, i) for all i, j;

monotonicity: ω(i, j) ≤ ω(i, k) if either i < j < k or i > j > k;

triangle inequality: ω(i, j) ≤ ω(i, k) + ω(k, j).
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The motivation for this last property stems from the following: if correctly ordering
items in positions (i, k) and (k, j) is not of great importance, then the same should
hold for items in positions (i, j).

Using different functions ω, the family of functions Lω can cover several familiar
and important losses. Here are some examples. Setting ω(i, j) = 1 for all i �= j

yields the unweighted pairwise misranking measure. For a fixed integer k ≥ 1,
the function ω defined by ω(i, j) = 1((i≤k)∨(j≤k))∧(i �=j) for all (i, j) can be used
to emphasize ranking at the top k elements. Misranking of pairs with at least
one element ranked among the top k is penalized by this function. This can be
of interest in applications such as information extraction or search engines where
the ranking of the top documents matters more. For this emphasis function, all
elements ranked below k are in a tie. Any tie relation can be encoded using ω.
Finally, in a bipartite ranking scenario with m+ positive and m− negative points
and m+ + m− = n, choosing ω(i, j) = n(n−1)

2m−m+ yields the standard loss function
coinciding with 1 − AUC.

9.7 Discussion

The objective function for the ranking problems discussed in this chapter were
all based on pairwise misranking. Other ranking criteria have been introduced in
information retrieval and used to derive alternative ranking algorithms. Here, we
briefly present several of these criteria.

Precision, precision@n, average precision, recall. All of these criteria assume that
points are partitioned into two classes (positives and negatives), as in the bipar-
tite ranking setting. Precision is the fraction of positively predicted points that
are in fact positive. Whereas precision takes into account all positive predictions,
precision@n only considers the top n predictions. For example, precision@5 consid-
ers only the top 5 positively predicted points. Average precision involves computing
precision@n for each value of n, and averaging across these values. Each precision@n

computation can be interpreted as computing precision for a fixed value of recall ,
or the fraction of positive points that are predicted to be positive (recall coincides
with the notion of true positive rate).

DCG, NDCG. These criteria assume the existence of relevance scores associated
with the points to be ranked, e.g., given a web search query, each website returned
by a search engine has an associated relevance score. Moreover, these criteria
measure the extent to which points with large relevance scores appear at or near the
beginning of a ranking. Define (ci)i∈N as a predefined sequence of non-increasing
and non-negative discount factors, e.g., ci = log(i)−1. Then, given a ranking of m

points and defining ri as the relevance score of the ith point in this ranking, the
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discounted cumulative gain (DCG) is defined as DCG =
∑m

i=1 ciri. Note that DCG
is an increasing function of m. In contrast, the normalized discounted cumulative
gain (NDCG) normalizes the DCG across values of m by dividing the DCG by the
IDCG, or the ideal DCG that would result from an optimal ordering of the points.

9.8 Chapter notes

The problem of learning to rank is distinct from the purely algorithmic one of rank
aggregation, which, as shown by Dwork, Kumar, Naor, and Sivakumar [2001], is
NP-hard even for k = 4 rankings. The Rademacher complexity and margin-based
generalization bounds for pairwise ranking given in theorem 9.1 and corollary 5.1 are
novel. Margin bounds based on covering numbers were also given by Rudin, Cortes,
Mohri, and Schapire [2005]. Other learning bounds in the score-based setting of
ranking, including VC-dimension and stability-based learning bounds, have been
given by Agarwal and Niyogi [2005], Agarwal et al. [2005] and Cortes et al. [2007b].

The ranking algorithm based on SVMs presented in section 9.3 has been used and
discussed by several researchers. One early and specific discussion of its use can be
found in Joachims [2002]. The fact that the algorithm is simply a special instance of
SVMs seems not to be clearly stated in the literature. The theoretical justification
presented here for its use in ranking is novel.

RankBoost was introduced by Freund et al. [2003]. The version of the algorithm
presented here is the coordinate descent RankBoost from Rudin et al. [2005].
RankBoost in general does not achieve a maximum margin and may not increase
the margin at each iteration. A Smooth Margin ranking algorithm [Rudin et al.,
2005] based on a modified version of the objective function of RankBoost can be
shown to increase the smooth margin at every iteration, but the comparison of
its empirical performance with that of RankBoost has not been reported. For the
empirical ranking quality of AdaBoost and the connections between AdaBoost and
RankBoost in the bipartite, setting see Cortes and Mohri [2003] and Rudin et al.
[2005].

The Receiver Operating Characteristics (ROC) curves were originally developed
in signal detection theory [Egan, 1975] in connection with radio signals during
World War II. They also had applications to psychophysics [Green and Swets, 1966]
and have been used since then in a variety of other applications, in particular for
medical decision making. The area under an ROC curve (AUC) is equivalent to the
Wilcoxon-Mann-Whitney statistic [Hanley and McNeil, 1982] and is closely related
to the Gini index [Breiman et al., 1984] (see also chapter 8). For a statistical analysis
of the AUC and confidence intervals depending on the error rate, see Cortes and
Mohri [2003, 2005]. The deterministic algorithm in the preference-based setting
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discussed in this chapter was presented and analyzed by Balcan et al. [2008]. The
randomized algorithm as well as much of the results presented in section 9.6 are
due to Ailon and Mohri [2008].

A somewhat related problem of ordinal regression has been studied by some
authors [McCullagh, 1980, McCullagh and Nelder, 1983, Herbrich et al., 2000] which
consists of predicting the correct label of each item out of a finite set, as in multi-
class classification, with the additional assumption of an ordering among the labels.
This problem is distinct, however, from the pairwise ranking problem discussed in
this chapter.

The DCG ranking criterion was introduced by Järvelin and Kekäläinen [2000],
and has been used and discussed in a number of subsequent studies, in particular
Cossock and Zhang [2008] who consider a subset ranking problem formulated in
terms of DCG, for which they consider a regression-based solution.

9.9 Exercises

9.1 Uniform margin-bound for ranking. Use theorem 9.1 to derive a margin-based
learning bound for ranking that holds uniformly for all ρ > 0 (see similar binary
classification bounds of theorem 4.5 and exercise 4.2).

9.2 On-line ranking. Give an on-line version of the SVM-based ranking algorithm
presented in section 9.3.

9.3 Empirical margin loss of RankBoost. Derive an upper bound on the empirical
pairwise ranking margin loss of RankBoost similar to that of theorem 6.3 for
AdaBoost.

9.4 Margin maximization and RankBoost. Give an example showing that Rank-
Boost does not achieve the maximum margin, as in the case of AdaBoost.

9.5 RankPerceptron. Adapt the Perceptron algorithm to derive a pairwise ranking
algorithm based on a linear scoring function. Assume that the training sample is
linear separable for pairwise ranking. Give an upper bound on the number of updates
made by the algorithm in terms of the ranking margin.

9.6 Margin-maximization ranking. Give a linear programming (LP) algorithm re-
turning a linear hypothesis for pairwise ranking based on margin maximization.

9.7 Bipartite ranking. Suppose that we use a binary classifier for ranking in the



9.9 Exercises 235

bipartite setting. Prove that if the error of the binary classifier is ε, then that of the
ranking it induces is also at most ε. Show that the converse does not hold.

9.8 Multipartite ranking. Consider the ranking scenario in a k-partite setting
where X is partitioned into k subsets X1, . . . ,Xk with k ≥ 1. The bipartite case
(k = 2) is already specifically examined in the chapter. Give a precise formulation
of the problem in terms of k distributions. Does RankBoost admit an efficient
implementation in this case? Give the pseudocode of the algorithm.

9.9 Deviation bound for the AUC. Let h be a fixed scoring function used to rank
the points of X . Use Hoeffding’s bound to show that with high probability the AUC
of h for a finite sample is close to its average.

9.10 k-partite weight function. Show how the weight function ω can be defined so
that Lω encodes the natural loss function associated to a k-partite ranking scenario.
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This chapter discusses in depth the learning problem of regression, which consists
of using data to predict, as closely as possible, the correct real-valued labels of the
points or items considered. Regression is a common task in machine learning with a
variety of applications, which justifies the specific chapter we reserve to its analysis.

The learning guarantees presented in the previous sections focused largely on
classification problems. Here we present generalization bounds for regression, both
for finite and infinite hypothesis sets. Several of these learning bounds are based on
the familiar notion of Rademacher complexity, which is useful for characterizing
the complexity of hypothesis sets in regression as well. Others are based on a
combinatorial notion of complexity tailored to regression that we will introduce,
pseudo-dimension, which can be viewed as an extension of the VC-dimension to
regression. We describe a general technique for reducing regression problems to
classification and deriving generalization bounds based on the notion of pseudo-
dimension. We present and analyze several regression algorithms, including linear
regression, kernel ridge regression, support-vector regression, Lasso, and several
on-line versions of these algorithms. We discuss in detail the properties of these
algorithms, including the corresponding learning guarantees.

10.1 The problem of regression

We first introduce the learning problem of regression. Let X denote the input space
and Y a measurable subset of R. We denote by D an unknown distribution over X
according to which input points are drawn and by f : X → Y the target labeling
function. This corresponds to a deterministic learning scenario that we adopt to
simplify the presentation. As discussed in section 2.4.1, the deterministic scenario
can be straightforwardly extended to a stochastic one where we have instead a
distribution over the pairs (x, y) ∈ X × Y.

As in all supervised learning problems, the learner receives a labeled sample
S =

(
(x1, y1), . . . , (xm, ym)

) ∈ (X × Y)m with x1, . . . , xm drawn i.i.d. according
to D, and yi = f(xi) for all i ∈ [1,m]. Since the labels are real numbers, it is
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not reasonable to hope that the learner could predict precisely the correct label.
Instead, we can require that his predictions be close to the correct ones. This is
the key difference between regression and classification: in regression, the measure
of error is based on the magnitude of the difference between the real-valued label
predicted and the true or correct one, and not based on the equality or inequality
of these two values.

We denote by L : Y × Y → R+ the loss function used to measure the magnitude
of error. The most common loss function used in regression is the squared loss L2

defined by L(y, y′) = |y′−y|2 for all y, y′ ∈ Y, or, more generally, an Lp loss defined
by L(y, y′) = |y′ − y|p, for some p ≥ 1 and all y, y′ ∈ Y.

Given a hypothesis set H of functions mapping X to Y, the regression problem
consists of using the labeled sample S to find a hypothesis h ∈ H with small
expected loss or generalization error R(h) with respect to the target f :

R(h) = E
x∼D

[
L
(
h(x), f(x)

)]
. (10.1)

As in the previous chapters, the empirical loss or error of h ∈ H is denoted by R̂(h)
and defined by

R̂(h) =
1
m

m∑
i=1

L
(
h(xi), yi

)
. (10.2)

In the common case where L is the squared loss, this represents the mean squared
error of h on the sample S.

When the loss function L is bounded by some M > 0, that is L(y′, y) ≤ M for all
y, y′ ∈ Y or, more strictly, L(h(x), f(x)) ≤ M for all h ∈ H and x ∈ X , the problem
is referred to as a bounded regression problem. Much of the theoretical results
presented in the following sections are based on that assumption. The analysis of
unbounded regression problems is technically more elaborate and typically requires
some other types of assumptions.

10.2 Generalization bounds

This section presents learning guarantees for bounded regression problems. We start
with the simple case of a finite hypothesis set.

10.2.1 Finite hypothesis sets

In the case of a finite hypothesis, we can derive a generalization bound for regression
by a straightforward application of Hoeffding’s inequality and the union bound.



10.2 Generalization bounds 239

Theorem 10.1

Let L be a bounded loss function. Assume that the hypothesis set H is finite. Then,
for any δ > 0, with probability at least 1 − δ, the following inequality holds for all
h ∈ H:

R(h) ≤ R̂(h) + M

√
log |H| + log 1

δ

2m
.

Proof By Hoeffding’s inequality, since L takes values in [0,M ], for any h ∈ H,
the following holds:

Pr
[
R(h) − R̂(h) > ε

]
≤ e−

2mε2

M2 .

Thus, by the union bound, we can write

Pr
[
∃h ∈ H : R(h) − R̂(h) > ε

]
≤
∑
h∈H

Pr
[
R(h) − R̂(h) > ε

]
≤ |H|e− 2mε2

M2 .

Setting the right-hand side to be equal to δ yields the statement of the theorem.

With the same assumptions and using the same proof, a two-sided bound can be
derived: with probability at least 1 − δ, for all h ∈ H,

|R(h) − R̂(h)| ≤ M

√
log |H| + log 2

δ

2m
.

These learning bounds are similar to those derived for classification. In fact, they
coincide with the classification bounds given in the inconsistent case when M = 1.
Thus, all the remarks made in that context apply identically here. In particular,
a larger sample size m guarantees better generalization; the bound increases as a
function of log |H| and suggests selecting, for the same empirical error, a smaller
hypothesis set. This is an instance of Occam’s razor principle for regression. In the
next sections, we present other instances of this principle for the general case of
infinite hypothesis sets using the notions of Rademacher complexity and pseudo-
dimension.

10.2.2 Rademacher complexity bounds

Here, we show how the Rademacher complexity bounds of theorem 3.1 can be
used to derive generalization bounds for regression in the case of the family of Lp

loss functions. We first show an upper bound for the Rademacher complexity of a
relevant family of functions.
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Theorem 10.2 Rademacher complexity of Lp loss functions
Let p ≥ 1 and Hp = {x �→ |h(x) − f(x)|p : h ∈ H}. Assume that |h(x) − f(x)| ≤ M

for all x ∈ X and h ∈ H. Then, for any sample S of size m, the following inequality
holds:

R̂S(Hp) ≤ pMp−1R̂S(H) .

Proof Let φp : x �→ |x|p, then, Hp can be rewritten as Hp = {φp ◦ h : h ∈ H ′},
where H ′ = {x �→ h(x)−f(x) : h ∈ H}. Since φp is pMp−1-Lipschitz over [−M,M ],
we can apply Talagrand’s lemma (lemma 4.2):

R̂S(Hp) ≤ pMp−1R̂S(H ′) . (10.3)

Now, R̂S(H ′) can be expressed as follows:

R̂S(H ′) =
1
m

E
σ

[
sup
h∈H

m∑
i=1

(
σih(xi) + σif(xi)

)]
=

1
m

E
σ

[
sup
h∈H

m∑
i=1

σih(xi)
]

+ E
σ

[ m∑
i=1

σif(xi)
]

= R̂S(H) ,

since Eσ

[∑m
i=1 σif(xi)

]
=
∑m

i=1 Eσ[σi]f(xi) = 0.

Combining this result with the general Rademacher complexity learning bound
of theorem 3.1 yields directly the following Rademacher complexity bounds for
regression with Lp losses.

Theorem 10.3 Rademacher complexity regression bounds
Let p ≥ 1 and assume that ‖h− f‖∞ ≤ M for all h ∈ H. Then, for any δ > 0, with
probability at least 1−δ over a sample S of size m, each of the following inequalities
holds for all h ∈ H:

E
[∣∣h(x) − f(x)

∣∣p] ≤ 1
m

m∑
i=1

∣∣h(xi) − f(xi)
∣∣p + 2pMp−1Rm(H) + Mp

√
log 1

δ

2m

E
[∣∣h(x) − f(x)

∣∣p] ≤ 1
m

m∑
i=1

∣∣h(xi) − f(xi)
∣∣p + 2pMp−1R̂S(H) + 3Mp

√
log 2

δ

2m
.

As in the case of classification, these generalization bounds suggest a trade-off
between reducing the empirical error, which may require more complex hypothesis
sets, and controlling the Rademacher complexity of H, which may increase the
empirical error. An important benefit of the last learning bound is that it is data-
dependent. This can lead to more accurate learning guarantees. The upper bounds
on Rm(H) or RS(H) for kernel-based hypotheses (theorem 5.5) can be used directly
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x1 x2

t2

t1

Figure 10.1 Illustration of the shattering of a set of two points {x1, x2} with
witnesses t1 and t2.

here to derive generalization bounds in terms of the trace of the kernel matrix or
the maximum diagonal entry.

10.2.3 Pseudo-dimension bounds

As previously discussed in the case of classification, it is sometimes computationally
hard to estimate the empirical Rademacher complexity of a hypothesis set. In
chapter 3, we introduce other measures of the complexity of a hypothesis set
such as the VC-dimension, which are purely combinatorial and typically easier
to compute or upper bound. However, the notion of shattering or that of VC-
dimension introduced for binary classification are not readily applicable to real-
valued hypothesis classes.

We first introduce a new notion of shattering for families of real-valued functions.
As in previous chapters, we will use the notation G for a family of functions,
whenever we intend to later interpret it (at least in some cases) as the family of loss
functions associated to some hypothesis set H: G = {x �→ L(h(x), f(x)) : h ∈ H}.
Definition 10.1 Shattering
Let G be a family of functions from X to R. A set {x1, . . . , xm} ⊆ X is said to be
shattered by G if there exist t1, . . . , tm ∈ R such that,∣∣∣∣∣∣∣∣

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

sgn
(
g(x1) − t1

)
...

sgn
(
g(xm) − tm

)
⎤⎥⎥⎦ : g ∈ G

⎫⎪⎪⎬⎪⎪⎭
∣∣∣∣∣∣∣∣ = 2m .

When they exist, the threshold values t1, . . . , tm are said to witness the shattering.

Thus, {x1, . . . , xm} is shattered if for some witnesses t1, . . . , tm, the family of
functions G is rich enough to contain a function going above a subset A of the
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Figure 10.2 A function g : x 	→ L(h(x), f(x)) (in blue) defined as the loss of some
fixed hypothesis h ∈ H, and its thresholded version x 	→ 1L(h(x),f(x))>t (in red) with
respect to the threshold t (in yellow).

set of points I = {(xi, ti) : i ∈ [1,m]} and below the others (I − A), for any choice
of the subset A. Figure 10.1 illustrates this shattering in a simple case. The notion
of shattering naturally leads to the following definition.

Definition 10.2 Pseudo-dimension
Let G be a family of functions mapping from X to R. Then, the pseudo-dimension
of G, denoted by Pdim(G), is the size of the largest set shattered by G.

By definition of the shattering just introduced, the notion of pseudo-dimension of
a family of real-valued functions G coincides with that of the VC-dimension of the
corresponding thresholded functions mapping X to {0, 1}:

Pdim(G) = VCdim
({

(x, t) �→ 1(g(x)−t)>0 : g ∈ G
})

. (10.4)

Figure 10.2 illustrates this interpretation. In view of this interpretation, the follow-
ing two results follow directly the properties of the VC-dimension.

Theorem 10.4

The pseudo-dimension of hyperplanes in R
N is given by

Pdim({x �→ w · x + b : w ∈ R
N , b ∈ R}) = N + 1 .

Theorem 10.5

The pseudo-dimension of a vector space of real-valued functions H is equal to the
dimension of the vector space:

Pdim(H) = dim(H) .

The following theorem gives a generalization bound for bounded regression
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in terms of the pseudo-dimension of a family of loss function G = {x �→
L(h(x), f(x)) : h ∈ H} associated to a hypothesis set H. The key technique to
derive these bounds consists of reducing the problem to that of classification by
making use of the following general identity for the expectation of a random variable
X:

E[X] = −
∫ 0

−∞
Pr[X < t]dt +

∫ +∞

0

Pr[X > t]dt , (10.5)

which holds by definition of the Lebesgue integral. In particular, for any distribution
D and any non-negative measurable function f , we can write

E
x∼D

[f(x)] =
∫ ∞

0

Pr
x∼D

[f(x) > t]dt . (10.6)

Theorem 10.6

Let H be a family of real-valued functions and let G = {x �→ L(h(x), f(x)) : h ∈ H}
be the family of loss functions associated to H. Assume that Pdim(G) = d and that
the loss function L is bounded by M . Then, for any δ > 0, with probability at least
1 − δ over the choice of a sample of size m, the following inequality holds for all
h ∈ H:

R(h) ≤ R̂(h) + M

√
2d log em

d

m
+ M

√
log 1

δ

2m
. (10.7)

Proof Let S be a sample of size m drawn i.i.d. according to D and let D̂ denote
the empirical distribution defined by S. For any h ∈ H and t ≥ 0, we denote by
c(h, t) the classifier defined by c(h, t) : x �→ 1L(h(x),f(x))>t. The error of c(h, t) can
be defined by

R(c(h, t)) = Pr
x∼D

[c(h, t)(x) = 1] = Pr
x∼D

[L(h(x), f(x)) > t],

and, similarly, its empirical error is R̂(c(h, t)) = Prx∼ bD[L(h(x), f(x)) > t].
Now, in view of the identity (10.6) and the fact that the loss function L is bounded
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by M , we can write:

|R(h) − R̂(h)| =
∣∣∣ E

x∼D
[L(h(x), f(x))] − E

x∼ bD
[L(h(x), f(x))]

∣∣∣
=

∣∣∣∣∣
∫ M

0

(
Pr

x∈D
[L(h(x), f(x)) > t] − Pr

x∈ bD
[L(h(x), f(x)) > t]

)
dt

∣∣∣∣∣
≤ M sup

t∈[0,M ]

∣∣∣∣ Pr
x∈D

[L(h(x), f(x)) > t] − Pr
x∈ bD

[L(h(x), f(x)) > t]
∣∣∣∣

= M sup
t∈[0,M ]

∣∣∣R(c(h, t)) − R̂(c(h, t))
∣∣∣ .

This implies the following inequality:

Pr
[
|R(h) − R̂(h)| > ε

]
≤ Pr

[
sup
h∈H

t∈[0,M ]

∣∣∣R(c(h, t)) − R̂(c(h, t))
∣∣∣ >

ε

M

]
.

The right-hand side can be bounded using a standard generalization bound for clas-
sification (corollary 3.4) in terms of the VC-dimension of the family of hypotheses
{c(h, t) : h ∈ H, t ∈ [0,M ]}, which, by definition of the pseudo-dimension, is pre-
cisely Pdim(G) = d. The resulting bound coincides with (10.7).

The notion of pseudo-dimension is suited to the analysis of regression as demon-
strated by the previous theorem; however, it is not a scale-sensitive notion. There
exists an alternative complexity measure, the fat-shattering dimension, that is scale-
sensitive and that can be viewed as a natural extension of the pseudo-dimension.
Its definition is based on the notion of γ-shattering.

Definition 10.3 γ-shattering
Let G be a family of functions from X to R and let γ > 0. A set {x1, . . . , xm} ⊆ X
is said to be γ-shattered by G if there exist t1, . . . , tm ∈ R such that for all
y ∈ {−1, +1}m, there exists g ∈ G such that:

∀i ∈ [1,m], yi(g(xi) − ti) ≥ γ .

Thus, {x1, . . . , xm} is γ-shattered if for some witnesses t1, . . . , tm, the family of
functions G is rich enough to contain a function going at least γ above a subset A

of the set of points I = {(xi, ti) : i ∈ [1,m]} and at least γ below the others (I −A),
for any choice of the subset A.

Definition 10.4 γ-fat-dimension
The γ-fat-dimension of G, fatγ(G), is the size of the largest set that is γ-shattered
by G.

Finer generalization bounds than those based on the pseudo-dimension can be
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Φ(x)

y

Figure 10.3 For N = 1, linear regression consists of finding the line of best fit,
measured in terms of the squared loss.

derived in terms of the γ-fat-dimension. However, the resulting learning bounds,
are not more informative than those based on the Rademacher complexity, which
is also a scale-sensitive complexity measure. Thus, we will not detail an analysis
based on the γ-fat-dimension.

10.3 Regression algorithms

The results of the previous sections show that, for the same empirical error,
hypothesis sets with smaller complexity measured in terms of the Rademacher
complexity or in terms of pseudo-dimension benefit from better generalization
guarantees. One family of functions with relatively small complexity is that of linear
hypotheses. In this section, we describe and analyze several algorithms based on
that hypothesis set: linear regression, kernel ridge regression (KRR), support vector
regression (SVR), and Lasso. These algorithms, in particular the last three, are
extensively used in practice and often lead to state-of-the-art performance results.

10.3.1 Linear regression

We start with the simplest algorithm for regression known as linear regression. Let
Φ : X → R

N be a feature mapping from the input space X to R
N and consider the

family of linear hypotheses

H = {x �→ w · Φ(x) + b : w ∈ R
N , b ∈ R} . (10.8)

Linear regression consists of seeking a hypothesis in H with the smallest empirical
mean squared error. Thus, for a sample S =

(
(x1, y1), . . . , (xm, ym)

) ∈ (X × Y)m,
the following is the corresponding optimization problem:

min
w,b

1
m

m∑
i=1

(w · Φ(xi) + b − yi)
2

. (10.9)
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Figure 10.3 illustrates the algorithm in the simple case where N = 1. The optimiza-
tion problem admits the simpler formulation:

min
W

F (W) =
1
m

‖X�W − Y‖2, (10.10)

using the notation X =
[

Φ(x1) ... Φ(xm)
1 ... 1

]
, W =

[
w1...
wN
1

]
and Y =

[ y1...
ym

]
. The objective

function F is convex, by composition of the convex function u �→ ‖u‖2 with the
affine function W �→ X�W − Y, and it is differentiable. Thus, F admits a global
minimum at W if and only if ∇F (W) = 0, that is if and only if

2
m

X(X�W − Y) = 0 ⇔ XX�W = XY . (10.11)

When XX� is invertible, this equation admits a unique solution. Otherwise, the
equation admits a family of solutions that can be given in terms of the pseudo-inverse
of matrix XX� (see appendix A) by W = (XX�)†XY+(I − (XX�)†(XX�))W0,
where W0 is an arbitrary matrix in R

N×N . Among these, the solution W =
(XX�)†XY is the one with the minimal norm and is often preferred for that reason.
Thus, we will write the solutions as

W =

{
(XX�)−1XY if XX� is invertible,

(XX�)†XY otherwise.
(10.12)

The matrix XX� can be computed in O(mN2). The cost of its inversion or that of
computing its pseudo-inverse is in O(N3).1 Finally, the multiplication with X and
Y takes O(mN2). Therefore, the overall complexity of computing the solution W
is in O(mN2 + N3). Thus, when the dimension of the feature space N is not too
large, the solution can be computed efficiently.

While linear regression is simple and admits a straightforward implementation,
it does not benefit from a strong generalization guarantee, since it is limited to
minimizing the empirical error without controlling the norm of the weight vector
and without any other regularization. Its performance is also typically poor in most
applications. The next sections describe algorithms with both better theoretical
guarantees and improved performance in practice.

1. In the analysis of the computational complexity of the algorithms discussed in this
chapter, the cubic-time complexity of matrix inversion can be replaced by a more favorable
complexity O(N2+ω), with ω = .376 using asymptotically faster matrix inversion methods
such as that of Coppersmith and Winograd.
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10.3.2 Kernel ridge regression

We first present a learning guarantee for regression with bounded linear hypotheses
in a feature space defined by a PDS kernel. This will provide a strong theoretical
support for the kernel ridge regression algorithm presented in this section. The
learning bounds of this section are given for the squared loss. Thus, in particular,
the generalization error of a hypothesis h is defined by R(h) = E

[
(h(x) − f(x))2

]
when the target function is f .

Theorem 10.7

Let K : X × X → R be a PDS kernel, Φ: X → H a feature mapping associated to
K, and H = {x �→ w · Φ(x) : ‖w‖H ≤ Λ}. Assume that there exists r > 0 such that
K(x, x) ≤ r2 and |f(x)| ≤ Λr for all x ∈ X . Then, for any δ > 0, with probability
at least 1 − δ, each of the following inequalities holds for all h ∈ H:

R(h) ≤ R̂(h) +
8r2Λ2

√
m

⎛⎝1 +
1
2

√
log 1

δ

2

⎞⎠ (10.13)

R(h) ≤ R̂(h) +
8r2Λ2

√
m

⎛⎝√Tr[K]
mr2

+
3
4

√
log 2

δ

2

⎞⎠ . (10.14)

Proof For all x ∈ X , we have |w · Φ(x)| ≤ Λ‖Φ(x)‖ ≤ Λr, thus, for all x ∈ X and
h ∈ H, |h(x)−f(x)| ≤ 2Λr. By the bound on the empirical Rademacher complexity
of kernel-based hypotheses (theorem 5.5), the following holds for any sample S of
size m:

R̂S(H) ≤ Λ
√

Tr[K]
m

≤
√

r2Λ2

m
,

which implies that Rm(H) ≤
√

r2Λ2

m . Plugging in this inequality in the first bound
of theorem 10.3 with M = 2Λr gives

R(h) ≤ R̂(h) + 4MRm(H) + M2

√
log 1

δ

2m
= R̂(h) +

8r2Λ2

√
m

(
1 +

1
2

√
log 1

δ

2

)
.

The second generalization bound is shown in a similar way by using the second
bound of theorem 10.3.

The first bound of the theorem just presented has the form R(h) ≤ R̂(h) + λΛ2,

with λ = 8r2√
m

(
1 + 1

2

√
log 1

δ

2

)
= O( 1√

m
). Kernel ridge regression is defined by the

minimization of an objective function that has precisely this form and thus is directly
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motivated by the theoretical analysis just presented:

min
w

F (w) = λ‖w‖2 +
m∑

i=1

(w · Φ(xi) − yi)
2
. (10.15)

Here, λ is a positive parameter determining the trade-off between the regularization
term ‖w‖2 and the empirical mean squared error. The objective function differs from
that of linear regression only by the first term, which controls the norm of w. As in
the case of linear regression, the problem can be rewritten in a more compact form
as

min
W

F (W) = λ‖W‖2 + ‖X�W − Y‖2, (10.16)

where X ∈ R
N×m is the matrix formed by the feature vectors, X = [ Φ(x1) ... Φ(xm) ],

W = w, and Y = (y1, . . . , ym)�. Here too, F is convex, by the convexity of
w �→ ‖w‖2 and that of the sum of two convex functions, and is differentiable.
Thus F admits a global minimum at W if and only if

∇F (W) = 0 ⇔ (XX� + λI)W = XY ⇔ W = (XX� + λI)−1XY. (10.17)

Note that the matrix XX� + λI is always invertible, since its eigenvalues are the
sum of the non-negative eigenvalues of the symmetric positive semidefinite matrix
XX� and λ > 0. Thus, kernel ridge regression admits a closed-form solution.

An alternative formulation of the optimization problem for kernel ridge regression
equivalent to (10.15) is

min
w

m∑
i=1

(w · Φ(xi) − yi)2 subject to: ‖w‖2 ≤ Λ2.

This makes the connection with the bounded linear hypothesis set of theorem 10.7
even more evident. Using slack variables ξi, for all i ∈ [1,m], the problem can be
equivalently written as

min
w

m∑
i=1

ξ2
i subject to: (‖w‖2 ≤ Λ2) ∧ (∀i ∈ [1,m], ξi = yi − w · Φ(xi)

)
.

This is a convex optimization problem with differentiable objective function and
constraints. To derive the equivalent dual problem, we introduce the Lagrangian L,
which is defined for all ξ,w,α′, and λ ≥ 0 by

L(ξ,w,α′, λ) =
m∑

i=1

ξ2
i +

m∑
i=1

α′
i(yi − ξi − w · Φ(xi)) + λ(‖w‖2 − Λ2) .
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The KKT conditions lead to the following equalities:

∇wL = −
m∑

i=1

α′
iΦ(xi) + 2λw = 0 =⇒ w =

1
2λ

m∑
i=1

α′
iΦ(xi)

∇ξiL = 2ξi − α′
i = 0 =⇒ ξi = α′

i/2

∀i ∈ [1,m], α′
i(yi − ξi − w · Φ(xi)) = 0

λ(‖w‖2 − Λ2) = 0.

Plugging in the expressions of w and ξis in that of L gives

L =
m∑

i=1

α′2
i

4
+

m∑
i=1

α′
iyi −

m∑
i=1

α′
i
2

2
− 1

2λ

m∑
i,j=1

α′
iα

′
jΦ(xi)�Φ(xj)

+ λ
( 1

4λ2
‖

m∑
i=1

α′
iΦ(xi)‖2 − Λ2

)
= −1

4

m∑
i=1

α′2
i +

m∑
i=1

α′
iyi − 1

4λ

m∑
i,j=1

α′
iα

′
jΦ(xi)�Φ(xj) − λΛ2

= −λ

m∑
i=1

α2
i + 2

m∑
i=1

αiyi −
m∑

i,j=1

αiαjΦ(xi)�Φ(xj) − λΛ2,

with α′
i = 2λαi. Thus, the equivalent dual optimization problem for KRR can be

written as follows:

max
α∈Rm

−λα�α + 2α�Y − α�(X�X)α , (10.18)

or, more compactly, as

max
α∈Rm

G(α) = −α�(K + λI)α + 2α�Y , (10.19)

where K = X�X is the kernel matrix associated to the training sample. The
objective function G is concave and differentiable. The optimal solution is obtained
by differentiating the function and setting it to zero:

∇G(α) = 0 ⇐⇒ 2(K + λI)α = 2Y ⇐⇒ α = (K + λI)−1Y . (10.20)

Note that (K+λI) is invertible, since its eigenvalues are the sum of the eigenvalues
of the SPSD matrix K and λ > 0. Thus, as in the primal case, the dual optimization
problem admits a closed-form solution. By the first KKT equation, w can be
determined from α by

w =
m∑

i=1

αiΦ(xi) = Xα = X(K + λI)−1Y. (10.21)
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The hypothesis h solution can be given as follows in terms of α:

∀x ∈ X , h(x) = w · Φ(x) =
m∑

i=1

αiK(xi, x) . (10.22)

Note that the form of the solution, h =
∑m

i=1 αiK(xi, ·), could be immediately
predicted using the Representer theorem, since the objective function minimized by
KRR falls within the general framework of theorem 5.4. This also could show that w
could be written as w = Xα. This fact, combined with the following simple lemma,
can be used to determine α in a straightforward manner, without the intermediate
derivation of the dual problem.

Lemma 10.1

The following identity holds for any matrix X:

(XX� + λI)−1X = X(X�X + λI)−1 .

Proof Observe that (XX�+λI)X = X(X�X+λI). Left-multiplying by (XX�+
λI)−1 this equality and right-multiplying it by (X�X + λI)−1 yields the statement
of the lemma.

Now, using this lemma, the primal solution of w can be rewritten as follows:

w = (XX� + λI)−1XY = X(X�X + λI)−1Y = X(K + λI)−1Y.

Comparing with w = Xα gives immediately α = (K + λI)−1Y.
Our presentation of the KRR algorithm was given for linear hypotheses with no

offset, that is we implicitly assumed b = 0. It is common to use this formulation
and to extend it to the general case by augmenting the feature vector Φ(x) with an
extra component equal to one for all x ∈ X and the weight vector w with an extra
component b ∈ R. For the augmented feature vector Φ′(x) ∈ R

N+1 and weight
vector w′ ∈ R

N+1, we have w′ ·Φ′(x) = w ·Φ(x)+ b. Nevertheless, this formulation
does not coincide with the general KRR algorithm where a solution of the form
x �→ w ·Φ(x) + b is sought. This is because for the general KRR, the regularization
term is λ‖w‖, while for the extension just described it is λ‖w′‖.

In both the primal and dual cases, KRR admits a closed-form solution. Table 10.1
gives the time complexity of the algorithm for computing the solution and the one
for determining the prediction value of a point in both cases. In the primal case,
determining the solution w requires computing matrix XX�, which takes O(mN2),
the inversion of (XX� + λI), which is in O(N3), and multiplication with X, which
is in O(mN2). Prediction requires computing the inner product of w with a feature
vector of the same dimension that can be achieved in O(N). The dual solution first
requires computing the kernel matrix K. Let κ be the maximum cost of computing
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Solution Prediction

Primal O(mN2 + N3) O(N)

Dual O(κm2 + m3) O(κm)

Table 10.1 Comparison of the running-time complexity of KRR for computing
the solution or the prediction value of a point in both the primal and the dual
case. κ denotes the time complexity of computing a kernel value; for polynomial
and Gaussian kernels, κ = O(N).

K(x, x′) for all pairs (x, x′) ∈ X × X . Then, K can be computed in O(κm2). The
inversion of matrix K + λI can be achieved in O(m3) and multiplication with Y
takes O(m2). Prediction requires computing the vector (K(x1, x), . . . ,K(xm, x))�

for some x ∈ X , which requires O(κm), and the inner product with α, which is in
O(m).

Thus, in both cases, the main step for computing the solution is a matrix inversion,
which takes O(N3) in the primal case, O(m3) in the dual case. When the dimension
of the feature space is relatively small, solving the primal problem is advantageous,
while for high-dimensional spaces and medium-sized training sets, solving the dual
is preferable. Note that for relatively large matrices, the space complexity could also
be an issue: the size of relatively large matrices could be prohibitive for memory
storage and the use of external memory could significantly affect the running time
of the algorithm.

For sparse matrices, there exist several techniques for faster computations of the
matrix inversion. This can be useful in the primal case where the features can be
relatively sparse. On the other hand, the kernel matrix K is typically dense; thus,
there is less hope for benefiting from such techniques in the dual case. In such cases,
or, more generally, to deal with the time and space complexity issues arising when
m and N are large, approximation methods using low-rank approximations via the
Nyström method or the partial Cholesky decomposition can be used very effectively.

The KRR algorithm admits several advantages: it benefits from favorable theo-
retical guarantees since it can be derived directly from the generalization bound we
presented; it admits a closed-form solution, which can make the analysis of many
of its properties convenient; and it can be used with PDS kernels, which extends its
use to non-linear regression solutions and more general features spaces. KRR also
admits favorable stability properties that we discuss in chapter 11.

The algorithm can be generalized to learning a mapping from X to R
p, p > 1.

This can be done by formulating the problem as p independent regression problems,
each consisting of predicting one of the p target components. Remarkably, the
computation of the solution for this generalized algorithm requires only a single
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Φ(x)

y

ε

w·Φ(x)+b

Figure 10.4 SVR attempts to fit a “tube” with width ε to the data. Training data
within the “epsilon tube” (blue points) incur no loss.

matrix inversion, e.g., (K + λI)−1 in the dual case, regardless of the value of p.
One drawback of the KRR algorithm, in addition to the computational issues for

determining the solution for relatively large matrices, is the fact that the solution it
returns is typically not sparse. The next two sections present two sparse algorithms
for linear regression.

10.3.3 Support vector regression

In this section, we present the support vector regression (SVR) algorithm, which
is inspired by the SVM algorithm presented for classification in chapter 4. The
main idea of the algorithm consists of fitting a tube of width ε > 0 to the data, as
illustrated by figure 10.4. As in binary classification, this defines two sets of points:
those falling inside the tube, which are ε-close to the function predicted and thus
not penalized, and those falling outside, which are penalized based on their distance
to the predicted function, in a way that is similar to the penalization used by SVMs
in classification.

Using a hypothesis set H of linear functions: H = {x �→ w · Φ(x) + b : w ∈
R

N , b ∈ R}, where Φ is the feature mapping corresponding some PDS kernel K,
the optimization problem for SVR can be written as follows:

min
w,b

1
2
‖w‖2 + C

m∑
i=1

∣∣yi − (w · Φ(xi) + b)
∣∣
ε
, (10.23)

where | · |ε denotes the ε-insensitive loss:

∀y, y′ ∈ Y, |y′ − y|ε = max(0, |y′ − y| − ε). (10.24)

The use of this loss function leads to sparse solutions with a relatively small
number of support vectors. Using slack variables ξi ≥ 0 and ξ′i ≥ 0, i ∈ [1,m],
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the optimization problem can be equivalently written as

min
w,b,ξ,ξ′

1
2
‖w‖2 + C

m∑
i=1

(ξi + ξ′i) (10.25)

subject to (w · Φ(xi) + b) − yi ≤ ε + ξi

yi − (w · Φ(xi) + b) ≤ ε + ξ′i
ξi ≥ 0, ξ′i ≥ 0, ∀i ∈ [1,m].

This is a convex quadratic program (QP) with affine constraints. Introducing the
Lagrangian and applying the KKT conditions leads to the following equivalent dual
problem in terms of the kernel matrix K:

max
α,α′

− ε(α′ + α)�1 + (α′ − α)�y − 1
2
(α′ − α)�K(α′ − α) (10.26)

subject to: (0 ≤ α ≤ C) ∧ (0 ≤ α′ ≤ C) ∧ ((α′ − α)�1 = 0) .

Any PDS kernel K can be used with SVR, which extends the algorithm to non-linear
regression solutions. Problem (10.26) is a convex QP similar to the dual problem
of SVMs and can be solved using similar optimization techniques. The solutions α

and α′ define the hypothesis h returned by SVR as follows:

∀x ∈ X , h(x) =
m∑

i=1

(α′
i − αi)K(xi,x) + b , (10.27)

where the offset b can be obtained from a point xj with 0 < αj < C by

b = −
m∑

i=1

(α′
i − αi)K(xi, xj) + yj + ε, (10.28)

or from a point xj with 0 < α′
j < C via

b = −
m∑

i=1

(α′
i − αi)K(xi, xj) + yj − ε. (10.29)

By the complementarity conditions, for all i ∈ [1,m], the following equalities hold:

αi

(
(w · Φ(xi) + b) − yi − ε − ξi

)
= 0

α′
i

(
(w · Φ(xi) + b) − yi + ε + ξ′i

)
= 0.

Thus, if αi �= 0 or α′
i �= 0, that is if xi is a support vector, then, either (w ·Φ(xi) +

b)−yi −ε = ξi holds or yi − (w ·Φ(xi)+b)−ε = ξ′i. This shows that support vectors
points lying outside the ε-tube. Of course, at most one of αi or α′

i is non-zero for
any point xi: the hypothesis either overestimates or underestimates the true label
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by more than ε. For the points within the ε-tube, we have αj = α′
j = 0; thus,

these points do not contribute to the definition of the hypothesis returned by SVR.
Thus, when the number of points inside the tube is relatively large, the hypothesis
returned by SVR is relatively sparse. The choice of the parameter ε determines a
trade-off between sparsity and accuracy: larger ε values provide sparser solutions,
since more points can fall within the ε-tube, but may ignore too many key points
for determining an accurate solution.

The following generalization bounds hold for the ε-insensitive loss and kernel-
based hypotheses and thus for the SVR algorithm. We denote by D the distribution
according to which sample points are drawn and by D̂ the empirical distribution
defined by a training sample of size m.

Theorem 10.8

Let K : X ×X → R be a PDS kernel, let Φ: X → H be a feature mapping associated
to K and let H = {x �→ w · Φ(x) : ‖w‖H ≤ Λ}. Assume that there exists r > 0 such
that K(x, x) ≤ r2 and |f(x)| ≤ Λr for all x ∈ X . Fix ε > 0. Then, for any δ > 0,
with probability at least 1− δ, each of the following inequalities holds for all h ∈ H,

E
x∼D

[|h(x) − f(x)|ε] ≤ E
x∼ bD

[|h(x) − f(x)|ε] +
2rΛ√

m

(
1 +

√
log 1

δ

2

)

E
x∼D

[|h(x) − f(x)|ε] ≤ E
x∼ bD

[|h(x) − f(x)|ε] +
2rΛ√

m

(√
Tr[K]
mr2

+ 3

√
log 2

δ

2

)
.

Proof Let Hε = {x �→ |h(x)−f(x)|ε : h ∈ H} and let H ′ = {x �→ h(x)−f(x) : h ∈
H}. Note that the function Φε : x �→ |x|ε is 1-Lipschitz. Thus, by Talagrand’s lemma
(lemma 4.2), we have R̂S(Hε) ≤ R̂S(H ′). By the proof of theorem 10.2, the equality
R̂S(H ′) = R̂S(H) holds, thus R̂S(Hε) ≤ R̂S(H).

As in the proof of theorem 10.7, for all x ∈ X and h ∈ H, we have |h(x)−f(x)| ≤
2Λr and Rm(H) ≤

√
r2Λ2

m . By the general Rademacher complexity learning bound
of theorem 3.1, for any δ > 0, with with probability at least 1 − δ, the following
learning bound holds with M = 2Λr:

E[|h(x) − f(x)|ε] ≤ Ê[|h(x) − f(x)|ε] + 2Rm(H) + M

√
log 1

δ

2m
.

Using Rm(H) ≤
√

r2Λ2

m yields the first statement of the theorem. The second
statement is shown in a similar way.

These results provide strong theoretical guarantees for the SVR algorithm. Note,
however, that the theorem does not provide guarantees for the expected loss of the
hypotheses in terms of the squared loss. For 0 < ε < 1/4, the inequality |x|2 ≤ |x|ε
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holds for all x in [−η′
ε,−ηε] ∪ [ηε, η

′
ε] with ηε = 1−√

1−4ε
2 and η′

ε = 1+
√

1−4ε
2 . For

small values of ε, ηε ≈ 0 and η′
ε ≈ 1, thus, if M = 2rλ ≤ 1, then, the squared loss

can be upper bounded by the ε-insensitive loss for almost all values of (h(x)−f(x))
in [−1, 1] and the theorem can be used to derive a useful generalization bound for
the squared loss.

More generally, if the objective is to achieve a small squared loss, then, SVR
can be modified by using the quadratic ε-insensitive loss, that is the square of the
ε-insensitive loss, which also leads to a convex QP. We will refer by quadratic SVR
to this version of the algorithm. Introducing the Lagrangian and applying the KKT
conditions leads to the following equivalent dual optimization problem for quadratic
SVR in terms of the kernel matrix K:

max
α,α′

− ε(α′ + α)�1 + (α′ − α)�y − 1
2
(α′ − α)�

(
K +

1
C

I
)
(α′ − α)

(10.30)

subject to: (α ≥ 0) ∧ (α ≥ 0) ∧ (α′ − α)�1 = 0) .

Any PDS kernel K can be used with quadratic SVR, which extends the algorithm to
non-linear regression solutions. Problem (10.30) is a convex QP similar to the dual
problem of SVMs in the separable case and can be solved using similar optimization
techniques. The solutions α and α′ define the hypothesis h returned by SVR as
follows:

h(x) =
m∑

i=1

(α′
i − αi)K(xi,x) + b , (10.31)

where the offset b can be obtained from a point xj with 0 < αj < C or 0 < α′
j < C

exactly as in the case of SVR with (non-quadratic) ε-insensitive loss. Note that for
ε = 0, the quadratic SVR algorithm coincides with KRR as can be seen from the
dual optimization problem (the additional constraint (α′ − α)�1 = 0 appears here
due to use of an offset b). The following generalization bound holds for quadratic
SVR. It can be shown in a way that is similar to the proof of theorem 10.8 using
the fact that the quadratic ε-insensitive function x �→ |x|2ε is 2-Lipschitz.

Theorem 10.9

Let K : X × X → R be a PDS kernel, Φ: X → H a feature mapping associated to
K, and H = {x �→ w · Φ(x) : ‖w‖H ≤ Λ}. Assume that there exists r > 0 such that
K(x, x) ≤ r2 and |f(x)| ≤ Λr for all x ∈ X . Fix ε > 0. Then, for any δ > 0, with
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Figure 10.5 Alternative loss functions that can be used in conjunction with SVR.

probability at least 1 − δ, each of the following inequalities holds for all h ∈ H:

E
x∼D

[|h(x) − f(x)|2ε ] ≤ E
x∼ bD

[|h(x) − f(x)|2ε ] +
8r2Λ2

√
m

⎛⎝1 +
1
2

√
log 1

δ

2

⎞⎠
E

x∼D
[|h(x) − f(x)|2ε ] ≤ E

x∼ bD
[|h(x) − f(x)|2ε ] +

8r2Λ2

√
m

⎛⎝√Tr[K]
mr2

+
3
4

√
log 2

δ

2

⎞⎠ .

This theorem provides a strong justification for the quadratic SVR algorithm. Alter-
native convex loss functions can be used to define regression algorithms, in particular
the Huber loss (see figure 10.5), which penalizes smaller errors quadratically and
larger ones only linearly.

SVR admits several advantages: the algorithm is based on solid theoretical
guarantees, the solution returned is sparse, and it allows a natural use of PDS
kernels, which extend the algorithm to non-linear regression solutions. SVR also
admits favorable stability properties that we discuss in chapter 11. However, one
drawback of the algorithm is that it requires the selection of two parameters, C

and ε. These can be selected via cross-validation, as in the case of SVMs, but this
requires a relatively larger validation set. Some heuristics are often used to guide
the search for their values: C is searched near the maximum value of the labels in
the absence of an offset (b = 0) and for a normalized kernel, and ε is chosen close to
the average difference of the labels. As already discussed, the value of ε determines
the number of support vectors and the sparsity of the solution. Another drawback of
SVR is that, as in the case of SVMs or KRR, it may be computationally expensive
when dealing with large training sets. One effective solution in such cases, as for
KRR, consists of approximating the kernel matrix using low-rank approximations
via the Nyström method or the partial Cholesky decomposition. In the next section,
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we discuss an alternative sparse algorithm for regression.

10.3.4 Lasso

Unlike the KRR and SVR algorithms, the Lasso (least absolute shrinkage and
selection operator) algorithm does not admit a natural use of PDS kernels. Thus,
here, we assume that the input space X is a subset of R

N and consider a family of
linear hypotheses H = {x �→ w · x + b : w ∈ R

N , b ∈ R}.
Let S =

(
(x1, y1), . . . , (xm, ym)

) ∈ (X × Y)m be a labeled training sample.
Lasso is based on the minimization of the empirical squared error on S with a
regularization term depending on the norm of the weight vector, as in the case of
the ridge regression, but using the L1 norm instead of the L2 norm and without
squaring the norm:

min
w,b

F (w, b) = λ‖w‖1 +
m∑

i=1

(w · xi + b − yi)
2

. (10.32)

Here λ denotes a positive parameter as for ridge regression. This is a convex
optimization problem, since ‖·‖1 is convex as with all norms and since the empirical
error term is convex, as already discussed for linear regression. The optimization
for Lasso can be written equivalently as

min
w,b

m∑
i=1

(w · xi + b − yi)
2 subject to: ‖w‖1 ≤ Λ1, (10.33)

where Λ1 is a positive parameter.
The key property of Lasso as in the case of other algorithms using the L1

norm constraint is that it leads to a sparse solution w, that is one with few
non-zero components. Figure 10.6 illustrates the difference between the L1 and L2

regularizations in dimension two. The objective function of (10.33) is a quadratic
function, thus its contours are ellipsoids, as illustrated by the figure (in blue). The
areas corresponding to L1 and L2 balls of a fixed radius Λ1 are also shown in the
left and right panel (in red). The Lasso solution is the point of intersection of the
contours with the L1 ball. As can be seen form the figure, this can typically occur
at a corner of the L1 ball where some coordinates are zero. In contrast, the ridge
regression solution is at the point of intersection of the contours and the L2 ball,
where none of the coordinates is typically zero.

The following results show that Lasso also benefits from strong theoretical guar-
antees. We first give a general upper bound on the empirical Rademacher complexity
of L1 norm-constrained linear hypotheses .

Theorem 10.10 Rademacher complexity of linear hypotheses with bounded
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L1 regularization L2 regularization

Figure 10.6 Comparison of the Lasso and ridge regression solutions.

L1 norm
Let X ⊆ R

N and let S =
(
(x1, y1), . . . , (xm, ym)

) ∈ (X × Y)m be a sample of
size m. Assume that for all i ∈ [1,m], ‖xi‖∞ ≤ r∞ for some r∞ > 0, and let
H = {x ∈ X �→ w · x : ‖w‖1 ≤ Λ1}. Then, the empirical Rademacher complexity of
H can be bounded as follows:

R̂S(H) ≤
√

2r2∞Λ2
1 log(2N)
m

. (10.34)

Proof For any i ∈ [1,m] we denote by xij the jth component of xi.

R̂S(H) =
1
m

E
σ

[
sup

‖w‖1≤Λ1

m∑
i=1

σiw · xi

]

=
Λ1

m
E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥
∞

]
(by definition of the dual norm)

=
Λ1

m
E
σ

[
max

j∈[1,N ]

∣∣∣∣∣
m∑

i=1

σixij

∣∣∣∣∣
]

(by definition of ‖ · ‖∞)

=
Λ1

m
E
σ

[
max

j∈[1,N ]
max

s∈{−1,+1}
s

m∑
i=1

σixij

]
(by definition of ‖ · ‖∞)

=
Λ1

m
E
σ

[
sup
z∈A

m∑
i=1

σizi

]
,

where A denotes the set of N vectors {s(x1j , . . . , xmj)� : j ∈ [1, N ], s ∈ {−1, +1}}.
For any z ∈ A, we have ‖z‖2 ≤ √

mr2∞ = r∞
√

m. Thus, by Massart’s lemma
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(theorem 3.3), since A contains at most 2N elements, the following inequality holds:

R̂S(H) ≤ Λ1r∞
√

m

√
2 log(2N)

m
= r∞Λ1

√
2 log(2N)

m
,

which concludes the proof.

Note that dependence of the bound on the dimension N is only logarithmic, which
suggests that using very high-dimensional feature spaces does not significantly affect
generalization.

Using the Rademacher complexity bound just proven and the general result of
theorem 10.3, the following generalization bound can be shown to hold for the
hypothesis set used by Lasso, using the squared loss.

Theorem 10.11

Let X ⊆ R
N and H = {x ∈ X �→ w · x : ‖w‖1 ≤ Λ1}. Assume that there exists

r∞ > 0 such for all x ∈ X , ‖x‖∞ ≤ r∞ and |f(x)| ≤ Λ1r∞. Then, for any δ > 0,
with probability at least 1− δ, each of the following inequalities holds for all h ∈ H:

R(h) ≤ R̂(h) +
8r2

∞Λ2
1√

m

⎛⎝√log(2N) +
1
2

√
log 1

δ

2

⎞⎠ . (10.35)

Proof For all x ∈ X , by Hölder’s inequality, we have |w·x| ≤ ‖w‖1‖x‖∞ ≤ Λ1r∞,
thus, for all h ∈ H, |h(x) − f(x)| ≤ 2r∞Λ1. Plugging in the inequality of
theorem 10.10 in the bound of theorem 10.3 with M = 2r∞Λ1 gives

R(h) ≤ R̂(h) + 8r2
∞Λ2

1

√
2 log(2N)

m
+ (2r∞Λ1)2

√
log 1

δ

2m
,

which can be simplified and written as (10.35).

As in the case of ridge regression, we observe that the objective function minimized
by Lasso has the same form as the right-hand side of this generalization bound.

There exist a variety of different methods for solving the optimization problem of
Lasso, including an efficient algorithm (Lars) for computing the entire regularization
path of solutions, that is, the Lasso solutions for all values of the regularization
parameter λ, and other on-line solutions that apply more generally to optimization
problems with an L1 norm constraint.

Here, we show that the Lasso problems (10.32) or (10.33) are equivalent to a
quadratic program (QP), and therefore that any QP solver can be used to compute
the solution. Observe that any weight vector w can be written as w = w+ − w−,
with w+ ≥ 0, w− ≥ 0, and w+

j = 0 or w−
j = 0 for any j ∈ [1, N ], which implies

‖w‖1 =
∑N

j=1 w+
j + w−

j . This can be done by defining the jth component of w+ as
wj if wj ≥ 0, 0 otherwise, and similarly the jth component of w− as −wj if wj ≤ 0,
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0 otherwise, for any j ∈ [1, N ]. With the replacement w = w+ −w−, with w+ ≥ 0,
w− ≥ 0, and ‖w‖1 =

∑N
j=1 w+

j + w−
j , the Lasso problem (10.32) becomes

min
w+≥0,w−≥0,b

λ

N∑
j=1

(w+
j + w−

j ) +
m∑

i=1

(
(w+ − w−) · xi + b − yi

)2
. (10.36)

Conversely, a solution w = w+ − w− of (10.36) verifies the condition w+
j = 0 or

w−
j = 0 for any j ∈ [1, N ], thus wj = w+

j when wj ≥ 0 and wj = −w−
j when wj ≤ 0.

This is because if δj = min(w+
j , w−

j ) > 0 for some j ∈ [1, N ], replacing w+
j with

(w+
j − δj) and w−

j with (w−
j − δj) would not affect w+

j −w−
j = (w+

j − δ)− (w−
j − δ),

but would reduce the term (w+
j + w−

j ) in the objective function by 2δj > 0 and
provide a better solution. In view of this analysis, problems (10.32) and (10.36)
admit the same optimal solution and are equivalent. Problem (10.36) is a QP since
the objective function is quadratic in w+, w−, and b, and since the constraints are
affine. With this formulation, the problem can be straightforwardly shown to admit
a natural online algorithmic solution (exercise 10.10).2

Thus, Lasso has several advantages: it benefits from strong theoretical guarantees
and returns a sparse solution, which is advantageous when there are accurate
solutions based on few features. The sparsity of the solution is also computationally
attractive; sparse feature representations of the weight vector can be used to make
the inner product with a new vector more efficient. The algorithm’s sparsity can also
be used for feature selection. The main drawback of the algorithm is that it does not
admit a natural use of PDS kernels and thus an extension to non-linear regression,
unlike KRR and SVR. One solution is then to use empirical kernel maps, as discussed
in chapter 5. Also, Lasso’s solution does not admit a closed-form solution. This is
not a critical property from the optimization point of view but one that can make
some mathematical analyses very convenient.

10.3.5 Group norm regression algorithms

Other types of regularization aside from the L1 or L2 norm can be used to define
regression algorithms. For instance, in some situations, the feature space may be
naturally partitioned into subsets, and it may be desirable to find a sparse solution
that selects or omits entire subsets of features. A natural norm in this setting is
the group or mixed norm L2,1, which is a combination of the L1 and L2 norms.
Imagine that we partition w ∈ R

N as w1, . . . ,wk, where wj ∈ R
Nj for 1 ≤ j ≤ k

and
∑

j Nj = N , and define W = (w�
1 , . . . ,w�

k )�. Then the L2,1 norm of W is

2. The technique we described to avoid absolute values in the objective function can be
used similarly in other optimization problems.
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WidrowHoff(w0)

1 w1 ← w0 � typically w0 = 0

2 for t ← 1 to T do

3 Receive(xt)

4 ŷt ← wt · xt

5 Receive(yt)

6 wt+1 ← wt + 2η(wt · xt − yt)xt � learning rate η > 0.

7 return wT+1

Figure 10.7 The Widrow-Hoff algorithm.

defined as

‖W‖2,1 =
k∑

j=1

‖wj‖ .

Combining the L2,1 norm with the empirical mean squared error leads to the Group
Lasso formulation. More generally, an Lq,p group norm regularization can be used
for q, p ≥ 1 (see appendix A for the definition of group norms).

10.3.6 On-line regression algorithms

The regression algorithms presented in the previous sections admit natural on-
line versions. Here, we briefly present two examples of these algorithms. These
algorithms are particularly useful for applications to very large data sets for which
a batch solution can be computationally too costly to derive and more generally in
all of the on-line learning settings discussed in chapter 7.

Our first example is known as the Widrow-Hoff algorithm and coincides with
the application of stochastic gradient descent techniques to the linear regression
objective function. Figure 10.7 gives the pseudocode of the algorithm. A similar
algorithm can be derived by applying the stochastic gradient technique to ridge
regression. At each round, the weight vector is augmented with a quantity that
depends on the prediction error (wt · xt − yt).

Our second example is an online version of the SVR algorithm, which is obtained
by application of stochastic gradient descent to the dual objective function of SVR.
Figure 10.8 gives the pseudocode of the algorithm for an arbitrary PDS kernel K

in the absence of any offset (b = 0). Another on-line regression algorithm is given
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OnLineDualSVR()

1 α ← 0

2 α′ ← 0

3 for t ← 1 to T do

4 Receive(xt)

5 ŷt ←∑T
s=1(α

′
s − αs)K(xs, xt)

6 Receive(yt)

7 α′
t+1 ← α′

t + min(max(η(yt − ŷt − ε),−α′
t), C − α′

t)

8 αt+1 ← αt + min(max(η(ŷt − yt − ε),−αt), C − αt)

9 return
∑T

t=1 αtK(xt, ·)

Figure 10.8 An on-line version of dual SVR.

by exercise 10.10 for Lasso.

10.4 Chapter notes

The generalization bounds presented in this chapter are for bounded regression
problems. When {x �→ L(h(x), f(x)) : h ∈ H}, the family of losses of the hypotheses,
is not bounded, a single function can take arbitrarily large values with arbitrarily
small probabilities. This is the main issue for deriving uniform convergence bounds
for unbounded losses. This problem can be avoided either by assuming the existence
of an envelope, that is a single non-negative function with a finite expectation lying
above the absolute value of the loss of every function in the hypothesis set [Dudley,
1984, Pollard, 1984, Dudley, 1987, Pollard, 1989, Haussler, 1992], or by assuming
that some moment of the loss functions is bounded [Vapnik, 1998, 2006]. Cortes,
Mansour, and Mohri [2010a] give two-sided generalization bounds for unbounded
losses with finite second moments. The one-sided version of their bounds coincides
with that of Vapnik [1998, 2006] modulo a constant factor, but the proofs given by
Vapnik in both books seem to be incorrect.

The Rademacher complexity bounds given for regression in this chapter (theo-
rem 10.2) are novel. The notion of pseudo-dimension is due to Pollard [1984]. Its
equivalent definition in terms of VC-dimension is discussed by Vapnik [2000]. The
notion of fat-shattering was introduced by Kearns and Schapire [1990]. The linear
regression algorithm is a classical algorithm in statistics that dates back at least to
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the nineteenth century. The ridge regression algorithm is due to Hoerl and Kennard
[1970]. Its kernelized version (KRR) was introduced and discussed by Saunders,
Gammerman, and Vovk [1998]. An extension of KRR to outputs in R

p with p > 1
with possible constraints on the regression is presented and analyzed by Cortes,
Mohri, and Weston [2007c]. The support vector regression (SVR) algorithm is dis-
cussed in Vapnik [2000]. Lasso was introduced by Tibshirani [1996]. The LARS
algorithm for solving its optimization problem was later presented by Efron et al.
[2004]. The Widrow-Hoff on-line algorithm is due to Widrow and Hoff [1988]. The
dual on-line SVR algorithm was first introduced and analyzed by Vijayakumar and
Wu [1999]. The kernel stability analysis of exercise 9.3 is from Cortes et al. [2010b].

For large-scale problems where a straightforward batch optimization of a primal or
dual objective function is intractable, general iterative stochastic gradient descent
methods similar to those presented in section 10.3.6, or quasi-Newton methods
such as the limited-memory BFGS (Broyden-Fletcher-Goldfard-Shanno) algorithm
[Nocedal, 1980] can be practical alternatives in practice.

In addition to the linear regression algorithms presented in this chapter and their
kernel-based non-linear extensions, there exist many other algorithms for regression,
including decision trees for regression (see chapter 8), boosting trees for regression,
and artificial neural networks.

10.5 Exercises

10.1 Pseudo-dimension and monotonic functions.

Assume that φ is a strictly monotonic function and let φ ◦ H be the family of
functions defined by φ ◦ H = {φ(h(·)) : h ∈ H}, where H is some set of real-valued
functions. Show that Pdim(φ ◦ H) = Pdim(H).

10.2 Pseudo-dimension of linear functions. Let H be the set of all linear functions
in dimension d, i.e. h(x) = w�x for some w ∈ R

d. Show that Pdim(H) = d.

10.3 Linear regression.

(a) What condition is required on the data X in order to guarantee that XX�

is invertible?

(b) Assume the problem is under-determined. Then, we can choose a solution
w such that the equality X�w = X�(XX�)†Xy (which can be shown to
equal X†Xy) holds. One particular choice that satisfies this equality is w∗ =
(XX�)†Xy. However, this is not the unique solution. As a function of w∗,
characterize all choices of w that satisfy X�w = X†Xy (Hint : use the fact
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that XX†[X = X).

10.4 Perturbed kernels. Suppose two different kernel matrices, K and K′, are used to
train two kernel ridge regression hypothesis with the same regularization parameter
λ. In this problem, we will show that the difference in the optimal dual variables,
α and α′ respectively, is bounded by a quantity that depends on ‖K′ − K‖2.

(a) Show α′ − α =
(
(K′ + λI)−1(K′ − K)(K + λI)−1

)
y. (Hint : Show that for

any invertible matrix M, M′1 − M1 = −M′−1(M′ − M)M−1.)

(b) Assuming ∀y ∈ Y, |y| ≤ M , show that

‖α′ − α‖ ≤
√

mM‖K′ − K‖2

λ2
.

10.5 Huber loss. Derive the primal and dual optimization problem used to solve the
SVR problem with the Huber loss:

Lc(ξi) =

{
1
2ξ2

i , if |ξi| ≤ c

cξi − 1
2c2, otherwise

,

where ξi = w · Φ(xi) + b − yi.

10.6 SVR and squared loss. Assuming that 2rΛ ≤ 1, use theorem 10.8 to derive a
generalization bound for the squared loss.

10.7 SVR dual formulations. Give a detailed and carefully justified derivation of
the dual formulations of the SVR algorithm both for the ε-insensitive loss and the
quadratic ε-insensitive loss.

10.8 Optimal kernel matrix. Suppose in addition to optimizing the dual variables
α ∈ R

m, as in (10.19), we also wish to optimize over the entries of the PDS kernel
matrix K ∈ R

m×m.

min
K�0

max
α

−λα�α − α�Kα + 2α�y , s.t. ‖K‖2 ≤ 1

(a) What is the closed-form solution for the optimal K for the joint optimiza-
tion?

(b) Optimizing over the choice of kernel matrix will provide a better value of
the objective function. Explain, however, why the resulting kernel matrix is not
useful in practice.
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OnLineLasso(w+
0 ,w−

0 )

1 w+
1 ← w+

0 � w+
0 ≥ 0

2 w−
1 ← w−

0 � w−
0 ≥ 0

3 for t ← 1 to T do

4 Receive(xt, yt)

5 for j ← 1 to N do

6 w+
t+1j

← max
(
0, w+

tj − η
[
λ − [yt − (w+

t − w−
t ) · xt

]
xtj

])
7 w−

t+1j
← max

(
0, w−

tj − η
[
λ +

[
yt − (w+

t − w−
t ) · xt

]
xtj

])
8 return w+

T+1 − w−
T+1

Figure 10.9 On-line algorithm for Lasso.

10.9 Leave-one-out error. In general, the computation of the leave-one-out error
can be very costly since, for a sample of size m, it requires training the algorithm
m times. The objective of this problem is to show that, remarkably, in the case
of kernel ridge regression, the leave-one-out error can be computed efficiently by
training the algorithm only once.

Let S = ((x1, y1), . . . , (xm, ym)) denote a training sample of size m and for any
i ∈ [1,m], let Si denote the sample of size m − 1 obtained from S by removing
(xi, yi): Si = S −{(xi, yi)}. For any sample T , let hT denote a hypothesis obtained
by training T . By definition (see definition 4.1), for the squared loss, the leave-one-
out error with respect to S is defined by

R̂LOO(KRR) =
1
m

m∑
i=1

(hSi
(xi) − yi)2 .

(a) Let S′
i = ((x1, y1), . . . , (xi, hSi

(yi)), . . . , (xm, ym)). Show that hSi
= hS′

i
.

(b) Define yi = y − yiei + hSi
(xi)ei, that is the vector of labels with the

ith component replaced with hSi(xi). Prove that for KRR hSi(xi) = y�
i (K +

λI)−1Kei.

(c) Prove that the leave-one-out error admits the following simple expression
in terms of hS :

R̂LOO(KRR) =
1
m

m∑
i=1

[
hS(xi) − yi

e�
i (K + λI)−1Kei

]2

. (10.37)
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(d) Suppose that the diagonal entries of matrix M = (K+λI)−1K are all equal
to γ. How do the empirical error R̂ of the algorithm and the leave-one-out error
R̂LOO relate? Is there any value of γ for which the two errors coincide?

10.10 On-line Lasso. Use the formulation (10.36) of the optimization problem of
Lasso and stochastic gradient descent (see section 7.3.1) to show that the problem
can be solved using the on-line algorithm of figure 10.9.

10.11 On-line quadratic SVR. Derive an on-line algorithm for the quadratic SVR
algorithm (provide the full pseudocode).



11 Algorithmic Stability

In chapters 2–4 and several subsequent chapters, we presented a variety of general-
ization bounds based on different measures of the complexity of the hypothesis set
H used for learning, including the Rademacher complexity, the growth function,
and the VC-dimension. These bounds ignore the specific algorithm used, that is,
they hold for any algorithm using H as a hypothesis set.

One may ask if an analysis of the properties of a specific algorithm could lead
to finer guarantees. Such an algorithm-dependent analysis could have the benefit
of a more informative guarantee. On the other hand, it could be inapplicable to
other algorithms using the same hypothesis set. Alternatively, as we shall see in
this chapter, a more general property of the learning algorithm could be used to
incorporate algorithm-specific properties while extending the applicability of the
analysis to other learning algorithms with similar properties.

This chapter uses the property of algorithmic stability to derive algorithm-
dependent learning guarantees. We first present a generalization bound for any
algorithm that is sufficiently stable. Then, we show that the wide class of kernel-
based regularization algorithms enjoys this property and derive a general upper
bound on their stability coefficient. Finally, we illustrate the application of these
results to the analysis of several algorithms both in the regression and classification
settings, including kernel ridge regression (KRR), SVR, and SVMs.

11.1 Definitions

We start by introducing the notation and definitions relevant to our analysis of
algorithmic stability. We denote by z a labeled example (x, y) ∈ X × Y. The
hypotheses h we consider map X to a set Y ′ sometimes different from Y. In
particular, for classification, we may have Y = {−1, +1} while the hypothesis h

learned takes values in R. The loss functions L we consider are therefore defined
over Y ′ × Y, with Y ′ = Y in most cases. For a loss function L : Y ′ × Y → R+, we
denote the loss of a hypothesis h at point z by Lz(h) = L(h(x), y). We denote by
D the distribution according to which samples are drawn and by H the hypothesis
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set. The empirical error or loss of h ∈ H on a sample S = (z1, . . . , zm) and its
generalization error are defined, respectively, by

R̂(h) =
1
m

m∑
i=1

Lzi
(h) and R(h) = E

z∼D
[Lz(h)].

Given an algorithm A, we denote by hS the hypothesis hS ∈ H returned by A when
trained on sample S. We will say that the loss function L is bounded by M ≥ 0 if
for all h ∈ H and z ∈ X × Y, Lz(h) ≤ M . For the results presented this chapter, a
weaker condition suffices, namely that Lz(hS) ≤ M for all hypotheses hS returned
by the algorithm A considered.

We are now able to define the notion of uniform stability, the algorithmic property
used in the analyses of this chapter.

Definition 11.1 Uniform stability
Let S and S′ be any two training samples that differ by a single point. Then, a
learning algorithm A is uniformly β-stable if the hypotheses it returns when trained
on any such samples S and S′ satisfy

∀z ∈ Z, |Lz(hS) − Lz(hS′)| ≤ β.

The smallest such β satisfying this inequality is called the stability coefficient of A.

In other words, when A is trained on two similar training sets, the losses incurred by
the corresponding hypotheses returned by A should not differ by more than β. Note
that a uniformly β-stable algorithm is often referred to as being β-stable or even just
stable (for some unspecified β). In general, the coefficient β depends on the sample
size m. We will see in section 11.2 that β = o(1/

√
m) is necessary for the convergence

of the stability-based learning bounds presented in this chapter. In section 11.3, we
will show that a more favorable condition holds, that is, β = O(1/m), for a wide
family of algorithms.

11.2 Stability-based generalization guarantee

In this section, we show that exponential bounds can be derived for the generaliza-
tion error of stable learning algorithms. The main result is presented in theorem 11.1.

Theorem 11.1

Assume that the loss function L is bounded by M ≥ 0. Let A be a β-stable learning
algorithm and let S be a sample of m points drawn i.i.d. according to distribution D.
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Then, with probability at least 1 − δ over the sample S drawn, the following holds:

R(hS) ≤ R̂(hS) + β + (2mβ + M)

√
log 1

δ

2m
.

Proof The proof is based on the application of McDiarmid’s inequality (theo-
rem D.3) to the function Φ defined for all samples S by Φ(S) = R(hS)− R̂(hS). Let
S′ be another sample of size m with points drawn i.i.d. according to D that differs
from S by exactly one point. We denote that point by zm in S, z′m in S′, i.e.,

S = (z1, . . . , zm−1, zm) and S′ = (z1, . . . , zm−1, z
′
m).

By definition of Φ, the following inequality holds:

|Φ(S′) − Φ(S)| ≤ |R(hS′) − R(hS)| + |R̂(hS′) − R̂(hS)|. (11.1)

We bound each of these two terms separately. By the β-stability of A, we have

|R(hS) − R(hS′)| = |E
z
[Lz(hS)] − E

z
[Lz(hS′)]| ≤ E

z
[|Lz(hS) − Lz(hS′)|] ≤ β.

Using the boundedness of L along with β-stability of A, we also have

|R̂(hS) − R̂(hS′)| =
1
m

∣∣∣∣∣
(m−1∑

i=1

Lzi(hS) − Lzi(hS′)
)

+ Lzm(hS) − Lz′
m

(hS′)

∣∣∣∣∣
≤ 1

m

[(m−1∑
i=1

|Lzi
(hS) − Lzi

(hS′)|
)

+ |Lzm
(hS) − Lz′

m
(hS′)|

]

≤ m − 1
m

β +
M

m
≤ β +

M

m
.

Thus, in view of (11.1), Φ satisfies the condition |Φ(S) − Φ(S′)| ≤ 2β + M
m . By

applying McDiarmid’s inequality to Φ(S), we can bound the deviation of Φ from
its mean as

Pr
[
Φ(S) ≥ ε + E

S
[Φ(S)]

]
≤ exp

( −2mε2

(2mβ + M)2

)
,

or, equivalently, with probability 1 − δ,

Φ(S) < ε + E
S
[Φ(S)], (11.2)

where δ = exp
(

−2mε2

(2mβ+M)2

)
. If we solve for ε in this expression for δ, plug into (11.2)
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and rearrange terms, then, with probability 1 − δ, we have

Φ(S) ≤ E
S∼Dm

[Φ(S)] + (2mβ + M)

√
log 1

δ

2m
. (11.3)

We now bound the expectation term, first noting that by linearity of expectation
ES [Φ(S)] = ES [R(hS)] − ES [R̂(hS)]. By definition of the generalization error,

E
S∼Dm

[R(hS)] = E
S∼Dm

[
E

z∼D
[Lz(hS)]

]
= E

S,z∼Dm+1
[Lz(hS)]. (11.4)

By the linearity of expectation,

E
S∼Dm

[R̂(hS)] =
1
m

m∑
i=1

E
S∼Dm

[Lzi(hS)] = E
S∼Dm

[Lz1(hS)], (11.5)

where the second equality follows from the fact that the zi are drawn i.i.d. and thus
the expectations ES∼Dm [Lzi

(hS)], i ∈ [1,m], are all equal. The last expression in
(11.5) is the expected loss of a hypothesis on one of its training points. We can
rewrite it as ES∼Dm [Lz1(hS)] = ES,z∼Dm+1 [Lz(hS′)], where S′ is a sample of m

points containing z extracted from the m + 1 points formed by S and z. Thus, in
view of (11.4) and by the β-stability of A, it follows that

| E
S∼Dm

[Φ(S)]| =
∣∣ E

S,z∼Dm+1
[Lz(hS)] − E

S,z∼Dm+1
[Lz(hS′)]

∣∣
≤ E

S,z∼Dm+1

[|Lz(hS) − Lz(hS′)|]
≤ E

S,z∼Dm+1
[β] = β.

We can thus replace ES [Φ(S)] by β in (11.3), which completes the proof.

The bound of the theorem converges for (mβ)/
√

m = o(1), that is β = o(1/
√

m). In
particular, when the stability coefficient β is in O(1/m), the theorem guarantees that
R(hS)−R̂(hS) = O(1/

√
m) with high probability. In the next section, we show that

kernel-based regularization algorithms precisely admit this property under some
general assumptions.

11.3 Stability of kernel-based regularization algorithms

Let K be a positive definite symmetric kernel, H the reproducing kernel Hilbert
space associated to K, and ‖ · ‖K the norm induced by K in H. A kernel-based
regularization algorithm is defined by the minimization over H of an objective
function FS based on a training sample S = (z1, . . . , zm) and defined for all h ∈ H
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x y

}
F (y)

BF (y||x)

F (x) + (y − x) · ∇F (x)

Figure 11.1 Illustration of the quantity measured by the Bregman divergence
defined based on a convex and differentiable function F . The divergence measures
the distance between F (y) and the hyperplane tangent to the curve at point x.

by:

FS(h) = R̂S(h) + λ‖h‖2
K . (11.6)

In this equation, R̂S(h) = 1
m

∑m
i=1 Lzi(h) is the empirical error of hypothesis h with

respect to a loss function L and λ ≥ 0 a trade-off parameter balancing the emphasis
on the empirical error versus the regularization term ‖h‖2

K . The hypothesis set H

is the subset of H formed by the hypotheses possibly returned by the algorithm.
Algorithms such as KRR, SVR and SVMs all fall under this general model.

We first introduce some definitions and tools needed for a general proof of an
upper bound on the stability coefficient of kernel-based regularization algorithms.
Our analysis will assume that the loss function L is convex and that it further
verifies the following Lipschitz-like smoothness condition.

Definition 11.2 σ-admissibility
A loss function L is σ-admissible with respect to the hypothesis class H if there
exists σ ∈ R+ such that for any two hypotheses h, h′ ∈ H and for all (x, y) ∈ X ×Y,

|L(h′(x), y) − L(h(x), y)| ≤ σ|h′(x) − h(x)|. (11.7)

This assumption holds for the quadratic loss and most other loss functions where
the hypothesis set and the set of output labels are bounded by some M ∈ R+:
∀h ∈ H,∀x ∈ X , |h(x)| ≤ M and ∀y ∈ Y, |y| ≤ M .

We will use the notion of Bregman divergence, BF which can be defined for any
convex and differentiable function F : H → R as follows: for all f, g ∈ H,

BF (f‖g) = F (f) − F (g) − 〈f − g,∇F (g)〉 .

Figure 11.1 illustrates the geometric interpretation of the Bregman divergence. We
generalize this definition to cover the case of convex but non-differentiable loss
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}
δF (h)

F (h)

Figure 11.2 Illustration of the notion of sub-gradient: elements of the subgradient
set ∂F (h) are shown in red at point h, for the function F shown in blue.

functions F by using the notion of subgradient . For a convex function F : H → R,
we denote by ∂F (h) the subgradient of F at h, which is defined as follows:

∂F (h) = {g ∈ H : ∀h′ ∈ H, F (h′) − F (h) ≥ 〈h′ − h, g〉}.

Thus, ∂F (h) is the set of vectors g defining a hyperplane supporting function F at
point h (see figure 11.2). ∂F (h) coincides with ∇F (h) when F is differentiable at h,
i.e. ∂F (h) = {∇F (h)}. Note that at a point h where F is minimal, 0 is an element
of ∂F (h). Furthermore, the subgradient is additive, that is, for two convex function
F1 and F2, ∂(F1 + F2)(h) = {g1 + g2 : g1 ∈ ∂F1(h), g2 ∈ ∂F2(h)}. For any h ∈ H,
we fix δF (h) to be an (arbitrary) element of ∂F (h). For any such choice of δF , we
can define the generalized Bregman divergence associated to F by:

∀h′, h ∈ H, BF (h′‖h) = F (h′) − F (h) − 〈h′ − h, δF (h)〉 . (11.8)

Note that by definition of the subgradient, BF (h′‖h) ≥ 0 for all h′, h ∈ H.
Starting from (11.6), we can now define the generalized Bregman divergence

of FS . Let N denote the convex function h → ‖h‖2
K . Since N is differentiable,

δN(h) = ∇N(h) for all h ∈ H, and δN and thus BN is uniquely defined. To
make the definition of the Bregman divergences for FS and R̂S compatible so that
BFS

= B bRS
+λBN , we define δR̂S in terms of δFS by: δR̂S(h) = δFS(h)−λ∇N(h)

for all h ∈ H. Furthermore, we choose δFS(h) to be 0 for any point h where FS is
minimal and let δFS(h) be an arbitrary element of ∂FS(h) for all other h ∈ H. We
proceed in a similar way to define the Bregman divergences for FS′ and R̂S′ so that
BFS′ = B bRS′ + λBN .

We will use the notion of generalized Bregman divergence for the proof of the fol-
lowing general upper bound on the stability coefficient of kernel-based regularization
algorithms.
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Proposition 11.1

Let K be a positive definite symmetric kernel such that for all x ∈ X , K(x, x) ≤ r2

for some r ∈ R+ and let L be a convex and σ-admissible loss function. Then, the
kernel-based regularization algorithm defined by the minimization (11.6) is β-stable
with the following upper bound on β:

β ≤ σ2r2

mλ
.

Proof Let h be a minimizer of FS and h′ a minimizer of FS′ , where samples S and
S′ differ exactly by one point, zm in S and z′m in S′. Since the generalized Bregman
divergence is non-negative and since BFS

= B bRS
+ λBN and BFS′ = B bRS′ + λBN ,

we can write

BFS
(h′‖h) + BFS′ (h‖h′) ≥ λ

(
BN (h′‖h) + BN (h‖h′)

)
.

Observe that BN (h′‖h) + BN (h‖h′) = −〈h′ − h, 2h〉 − 〈h − h′, 2h′〉 = 2‖h′ − h‖2
K .

Let Δh denote h′ − h, then we can write

2λ||Δh‖2
K

≤ BFS
(h′||h) + BFS′ (h||h′)

= FS(h′) − FS(h) − 〈h′ − h, δFS(h)〉 + FS′(h) − FS′(h′) − 〈h − h′, δFS′(h′)〉
= FS(h′) − FS(h) + FS′(h) − FS′(h′)

= R̂S(h′) − R̂S(h) + R̂S′(h) − R̂S′(h′).

The second equality follows from the definition of h′ and h as minimizers and our
choice of the subgradients for minimal points which together imply δFS′(h′) = 0
and δFS(h) = 0. The last equality follows from the definitions of FS and FS′ . Next,
we express the resulting inequality in terms of the loss function L and use the fact
that S and S′ differ by only one point along with the σ-admissibility of L to get

2λ‖Δh‖2
K ≤ 1

m
[Lzm(h′) − Lzm(h) + Lz′

m
(h) − Lz′

m
(h′)]

≤ σ

m
[|Δh(xm)| + |Δh(x′

m)|]. (11.9)

By the reproducing kernel property and the Cauchy-Schwarz inequality , for all
x ∈ X ,

Δh(x) = 〈Δh, K(x, ·)〉 ≤ ‖Δh‖K‖K(x, ·)‖K =
√

K(x, x)‖Δh‖K ≤ r‖Δh‖K .

In view of (11.9), this implies ‖Δh‖K ≤ σr
λm . By the σ-admissibility of L and the

reproducing property, the following holds:

∀z ∈ X × Y, |Lz(h′) − Lz(h)| ≤ σ|Δh(x)| ≤ rσ‖Δh‖K ,
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which gives

∀z ∈ X × Y, |Lz(h′) − Lz(h)| ≤ σ2r2

mλ
,

and concludes the proof.

Thus, under the assumptions of the proposition, for a fixed λ, the stability coefficient
of kernel-based regularization algorithms is in O(1/m).

11.3.1 Application to regression algorithms: SVR and KRR

Here, we analyze more specifically two widely used regression algorithms, Support
Vector Regression (SVR) and Kernel Ridge Regression (KRR), which are both
special instances of the family of kernel-based regularization algorithms.

SVR is based on the ε-insensitive loss Lε defined for all (y, y′) ∈ Y × Y by:

Lε(y′, y) =

{
0 if |y′ − y| ≤ ε;

|y′ − y| − ε otherwise.
(11.10)

We now present a stability-based bound for SVR assuming that Lε is bounded for
the hypotheses returned by SVR (which, as we shall later see in lemma 11.1, is
indeed the case when the label set Y is bounded).

Corollary 11.1 Stability-based learning bound for SVR
Assume that K(x, x) ≤ r2 for all x ∈ X for some r ≥ 0 and that Lε is bounded
by M ≥ 0. Let hS denote the hypothesis returned by SVR when trained on an
i.i.d. sample S of size m. Then, for any δ > 0, the following inequality holds with
probability at least 1 − δ:

R(hS) ≤ R̂(hS) +
r2

mλ
+
(2r2

λ
+ M

)√ log 1
δ

2m
.

Proof We first show that Lε(·) = Lε(·, y) is 1-Lipschitz for any y ∈ Y. For any
y′, y′′ ∈ Y, we must consider four cases. First, if |y′ − y| ≤ ε and |y′′ − y| ≤ ε,
then |Lε(y′′) − Lε(y′)| = 0. Second, if |y′ − y| > ε and |y′′ − y| > ε, then
|Lε(y′′) − Lε(y′)| = ||y′′ − y| − |y′ − y|| ≤ |y′′ − y′|, by the triangle inequality.
Third, if |y′ − y| ≤ ε and |y′′ − y| > ε, then |Lε(y′′) − Lε(y′)| = ||y′′ − y| − ε| =
|y′′ − y| − ε ≤ |y′′ − y| − |y′ − y| ≤ |y′′ − y′|. Fourth, if |y′′ − y| ≤ ε and |y′ − y| > ε,
by symmetry the same inequality is obtained as in the previous case.

Thus, in all cases, |Lε(y′′, y)−Lε(y′, y)| ≤ |y′′−y′|. This implies in particular that
Lε is σ-admissible with σ = 1 for any hypothesis set H. By proposition 11.1, under
the assumptions made, SVR is β-stable with β ≤ r2

mλ . Plugging this expression into
the bound of theorem 11.1 yields the result.
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We next present a stability-based bound for KRR, which is based on the square
loss L2 defined for all y′, y ∈ Y by:

L2(y′, y) = (y′ − y)2. (11.11)

As in the SVR setting, we assume in our analysis that L2 is bounded for the
hypotheses returned by KRR (which, as we shall later see again in lemma 11.1,
is indeed the case when the label set Y is bounded).

Corollary 11.2 Stability-based learning bound for KRR
Assume that K(x, x) ≤ r2 for all x ∈ X for some r ≥ 0 and that L2 is bounded
by M ≥ 0. Let hS denote the hypothesis returned by KRR when trained on an
i.i.d. sample S of size m. Then, for any δ > 0, the following inequality holds with
probability at least 1 − δ:

R(hS) ≤ R̂(hS) +
4Mr2

λm
+
(8Mr2

λ
+ M

)√ log 1
δ

2m
.

Proof For any (x, y) ∈ X × Y and h, h′ ∈ H,

|L2(h′(x), y) − L2(h(x), y)| =
∣∣(h′(x) − y)2 − (h(x) − y)2

∣∣
=
∣∣∣[h′(x) − h(x)][(h′(x) − y) + (h(x) − y)

]∣∣∣
≤ (|h′(x) − y| + |h(x) − y|)|h(x) − h′(x)|
≤ 2

√
M |h(x) − h′(x)|,

where we used the M -boundedness of the loss. Thus, L2 is σ-admissible with
σ = 2

√
M . Therefore, by proposition 11.1, KRR is β-stable with β ≤ 4r2M

mλ . Plugging
this expression into the bound of theorem 11.1 yields the result.

The previous two corollaries assumed bounded loss functions. We now present a
lemma that implies in particular that the loss functions used by SVR and KRR are
bounded when the label set is bounded.

Lemma 11.1

Assume that K(x, x) ≤ r2 for all x ∈ X for some r ≥ 0 and that for all y ∈ Y ,
L(0, y) ≤ B for some B ≥ 0. Then, the hypothesis hS returned by a kernel-based
regularization algorithm trained on a sample S is bounded as follows:

∀x ∈ X, |hS(x)| ≤ r
√

B/λ.

Proof By the reproducing kernel property and the Cauchy-Schwarz inequality ,
we can write

∀x ∈ X, |hS(x)| = 〈hS ,K(x, ·)〉 ≤ ‖hS‖K

√
K(x, x) ≤ r‖hS‖K . (11.12)
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The minimization (11.6) is over H, which includes 0. Thus, by definition of FS and
hS , the following inequality holds:

FS(hS) ≤ FS(0) =
1
m

m∑
i=1

L(0, yi) ≤ B.

Since the loss L is non-negative, we have λ‖hS‖2
K ≤ FS(hS) and thus λ‖hS‖2

K ≤ B.
Combining this inequality with (11.12) yields the result.

11.3.2 Application to classification algorithms: SVMs

This section presents a generalization bound for SVMs, when using the standard
hinge loss defined for all y ∈ Y = {−1, +1} and y′ ∈ R by

Lhinge(y′, y) =

{
0 if 1 − yy′ ≤ 0;

1 − yy′ otherwise.
(11.13)

Corollary 11.3 Stability-based learning bound for SVMs
Assume that K(x, x) ≤ r2 for all x ∈ X for some r ≥ 0. Let hS denote the hypothesis
returned by SVMs when trained on an i.i.d. sample S of size m. Then, for any δ > 0,
the following inequality holds with probability at least 1 − δ:

R(hS) ≤ R̂(hS) +
r2

mλ
+
(2r2

λ
+

r√
λ

+ 1
)√ log 1

δ

2m
.

Proof It is straightforward to verify that Lhinge(·, y) is 1-Lipschitz for any y ∈ Y
and therefore that it is σ-admissible with σ = 1. Therefore, by proposition 11.1,
SVMs is β-stable with β ≤ r2

mλ . Since |Lhinge(0, y)| ≤ 1 for any y ∈ Y, by lemma 11.1,
∀x ∈ X , |hS(x)| ≤ r/

√
λ. Thus, for any sample S and any x ∈ X and y ∈ Y, the

loss is bounded as follows: Lhinge(hS(x), y) ≤ r/
√

λ + 1. Plugging this value of M

and the one found for β into the bound of theorem 11.1 yields the result.

Since the hinge loss upper bounds the binary loss, the bound of the corollary 11.3
also applies to the generalization error of hS measured in terms of the standard
binary loss used in classification.

11.3.3 Discussion

Note that the learning bounds presented for kernel-based regularization algorithms
are of the form R(hS) − R̂(hS) ≤ O

(
1

λ
√

m

)
. Thus, these bounds are informative

only when λ " 1/
√

m. The regularization parameter λ is a function of the sample
size m: for larger values of m, it is expected to be smaller, decreasing the emphasis
on regularization. The magnitude of λ affects the norm of the linear hypotheses
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used for prediction, with a larger value of λ implying a smaller hypothesis norm. In
this sense, λ is a measure of the complexity of the hypothesis set and the condition
required for λ can be interpreted as stating that a less complex hypothesis set
guarantees better generalization.

Note also that our analysis of stability in this chapter assumed a fixed λ: the
regularization parameter is assumed to be invariant to the change of one point of
the training sample. While this is a mild assumption, it may not hold in general.

11.4 Chapter notes

The notion of algorithmic stability was first used by Devroye, Rogers and Wagner
[Rogers and Wagner, 1978, Devroye and Wagner, 1979a,b] for the k-nearest neighbor
algorithm and other k-local rules. Kearns and Ron [1999] later gave a formal defini-
tion of stability and used it to provide an analysis of the leave-one-out error. Much
of the material presented in this chapter is based on Bousquet and Elisseeff [2002].
Our proof of proposition 11.1 is novel and generalizes the results of Bousquet and
Elisseeff [2002] to the case of non-differentiable convex losses. Moreover, stability-
based generalization bounds have been extended to ranking algorithms [Agarwal
and Niyogi, 2005, Cortes et al., 2007b], as well as to the non-i.i.d. scenario of sta-
tionary Φ- and β-mixing processes [Mohri and Rostamizadeh, 2010], and to the
transductive setting [Cortes et al., 2008a]. Additionally, exercise 11.5 is based on
Cortes et al. [2010b], which introduces and analyzes stability with respect to the
choice of the kernel function or kernel matrix.

Note that while, as shown in this chapter, uniform stability is sufficient for
deriving generalization bounds, it is not a necessary condition. Some algorithms may
generalize well in the supervised learning scenario but may not be uniformly stable,
for example, the Lasso algorithm [Xu et al., 2008]. Shalev-Shwartz et al. [2009]
have used the notion of stability to provide necessary and sufficient conditions for a
technical condition of learnability related to PAC-learning, even in general scenarios
where learning is possible only by using non-ERM rules.

11.5 Exercises

11.1 Tighter stability bounds

(a) Assuming the conditions of theorem 11.1 hold, can one hope to guarantee
a generalization with slack better than O(1/

√
m) even if the algorithm is very

stable, i.e. β → 0?
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(b) Can you show an O(1/m) generalization guarantee if L is bounded by
C/

√
m (a very strong condition)? If so, how stable does the learning algorithm

need to be?

11.2 Quadratic hinge loss stability. Let L denote the quadratic hinge loss function
defined for all y ∈ {+1,−1} and y′ ∈ R by

L(y′, y) =

{
0 if 1 − y′y ≤ 0;

(1 − y′y)2 otherwise.

Assume that L(h(x), y) is bounded by M , 1 ≤ M < ∞, for all h ∈ H, x ∈ X , and
y ∈ {+1,−1}, which also implies a bound on |h(x)| for all h ∈ H and x ∈ X . Derive
a stability-based generalization bound for SVMs with the quadratic hinge loss.

11.3 Stability of linear regression.

(a) How does the stability bound in corollary 11.2 for ridge regression (i.e.
kernel ridge regression with a linear kernel) behave as λ → 0?

(b) Can you show a stability bound for linear regression (i.e. ridge regression
with λ = 0)? If not, show a counter-example.

11.4 Kernel stability. Suppose an approximation of the kernel matrix K, denoted
K′, is used to train the hypothesis h′ (and let h denote the non-approximate hypoth-
esis). At test time, no approximation is made, so if we let kx =

[
K(x, x1), . . . ,K(x, xm)

]�
we can write h(x) = α�kx and h′(x) = α′�kx. Show that if ∀x, x′ ∈ X ,K(x, x′) ≤ r

then

|h′(x) − h(x)| ≤ rmM

λ2
‖K′ − K‖2 .

(Hint : Use exercise 9.3)

11.5 Stability of relative-entropy regularization.

(a) Consider an algorithm that selects a distribution g over a hypothesis class
which is parameterized by θ ∈ Θ. Given a point z = (x, y) the expected loss is
defined as

H(g, z) =
∫

Θ

L(hθ(x), y)g(θ) dθ ,

with respect to a base loss function L. Assuming the loss function L is
bounded by M , show that the expected loss H is M -admissible, i.e. show
|H(g, z) − H(g′, z)| ≤ M

∫
Θ

|g(θ) − g′(θ)| dθ.
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(b) Consider an algorithm that minimizes the entropy regularized objective
over the choice of distribution g:

FS(g) =
1
m

m∑
i=1

H(g, zi)︸ ︷︷ ︸
bRS(g)

+λK(g, f0) .

Here, K is the Kullback-Leibler divergence (or relative entropy) between two
distributions,

K(g, f0) =
∫

Θ

g(θ) log
g(θ)
f0(θ)

dθ , (11.14)

and f0 is some fixed distribution. Show that such an algorithm is stable by
performing the following steps:

i. First use the fact 1
2 (
∫
Θ

|g(θ) − g′(θ)| dθ)2 ≤ K(g, g′) (Pinsker’s inequal-
ity), to show(∫

Θ

|gS(θ) − gS′(θ)| dθ
)2

≤ BK(.,f0)(g‖g′) + BK(.,f0)(g
′‖g) .

ii. Next, let g be the minimizer of FS and g′ the minimizer of FS′ , where
S and S′ differ only at the index m. Show that

BK(.,f0)(g‖g′) + BK(.,f0)(g
′‖g)

≤ 1
mλ

∣∣H(g′, zm) − H(g, zm) + H(g, z′m) − H(g′, z′m)
∣∣

≤ 2M

mλ

∫
Θ

|g(θ) − g′(θ)| dθ .

iii. Finally, combine the results above to show that the entropy regularized
algorithm is 2M2

mλ -stable.





12 Dimensionality Reduction

In settings where the data has a large number of features, it is often desirable
to reduce its dimension, or to find a lower-dimensional representation preserving
some of its properties. The key arguments for dimensionality reduction (or manifold
learning) techniques are:

Computational : to compress the initial data as a preprocessing step to speed up
subsequent operations on the data.

Visualization: to visualize the data for exploratory analysis by mapping the input
data into two- or three-dimensional spaces.

Feature extraction: to hopefully generate a smaller and more effective or useful
set of features.

The benefits of dimensionality reduction are often illustrated via simulated data,
such as the Swiss roll dataset. In this example, the input data, depicted in fig-
ure 12.1a, is three-dimensional, but it lies on a two-dimensional manifold that
is “unfolded” in two-dimensional space as shown in figure 12.1b. It is important
to note, however, that exact low-dimensional manifolds are rarely encountered in
practice. Hence, this idealized example is more useful to illustrate the concept of
dimensionality reduction than to verify the effectiveness of dimensionality reduction
algorithms.

Dimensionality reduction can be formalized as follows. Consider a sample S =
(x1, . . . , xm), a feature mapping Φ : X → R

N and the data matrix X ∈ R
N×m

defined as (Φ(x1), . . . ,Φ(xm)). The ith data point is represented by xi = Φ(xi), or
the ith column of X, which is an N -dimensional vector. Dimensionality reduction
techniques broadly aim to find, for k & N , a k-dimensional representation of the
data, Y ∈ R

k×m, that is in some way faithful to the original representation X.
In this chapter we will discuss various techniques that address this problem.

We first present the most commonly used dimensionality reduction technique called
principal component analysis (PCA). We then introduce a kernelized version of PCA
(KPCA) and show the connection between KPCA and manifold learning algorithms.
We conclude with a presentation of the Johnson-Lindenstrauss lemma, a classical
theoretical result that has inspired a variety of dimensionality reduction methods
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(a) (b)

Figure 12.1 The “Swiss roll” dataset. (a) high-dimensional representation. (b)
lower-dimensional representation.

based on the concept of random projections. The discussion in this chapter relies
on basic matrix properties that are reviewed in appendix A.

12.1 Principal Component Analysis

Fix k ∈ [1, N ] and let X be a mean-centered data matrix, that is,
∑m

i=1 xi = 0.
Define Pk as the set of N -dimensional rank-k orthogonal projection matrices.
PCA consists of projecting the N -dimensional input data onto the k-dimensional
linear subspace that minimizes reconstruction error , that is the sum of the squared
L2-distances between the original data and the projected data. Thus, the PCA
algorithm is completely defined by the orthogonal projection matrix solution P∗ of
the following minimization problem:

min
P∈Pk

‖PX − X‖2
F . (12.1)

The following theorem shows that PCA coincides with the projection of each
data point onto the k top singular vectors of the sample covariance matrix, i.e.,
C = 1

mXX� for the mean-centered data matrix X. Figure 12.2 illustrates the
basic intuition behind PCA, showing how two-dimensional data points with highly
correlated features can be more succinctly represented with a one-dimensional
representation that captures most of the variance in the data.

Theorem 12.1

Let P∗ ∈ Pk be the PCA solution, i.e., the orthogonal projection matrix solution of
(12.1). Then, P∗ = UkU�

k , where Uk ∈ R
N×k is the matrix formed by the top k

singular vectors of C = 1
mXX�, the sample covariance matrix corresponding to X.
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Moreover, the associated k-dimensional representation of X is given by Y = U�
k X.

Proof Let P = P� be an orthogonal projection matrix. By the definition of
the Frobenius norm, the linearity of the trace operator and the fact that P is
idempotent, i.e., P2 = P, we observe that

‖PX − X‖2
F = Tr[(PX − X)�(PX − X)] = Tr[X�P2X − 2X�PX + X�X]

= −Tr[X�PX] + Tr[X�X] .

Since Tr[X�X] is a constant with respect to P, we have

min
P∈Pk

‖PX − X‖2
F = max

P∈Pk

Tr[X�PX] . (12.2)

By definition of orthogonal projections in Pk, P = UU� for some U ∈ R
N×k

containing orthogonal columns. Using the invariance of the trace operator under
cyclic permutations and the orthogonality of the columns of U, we have

Tr[X�PX] = U�XX�U =
k∑

i=1

u�
i XX�ui ,

where ui is the ith column of U. By the Rayleigh quotient (section A.2.3), it is clear
that the largest k singular vectors of XX� maximize the rightmost sum above. Since
XX� and C differ only by a scaling factor, they have the same singular vectors,
and thus Uk maximizes this sum, which proves the first statement of the theorem.
Finally, since PX = UkU�

k X, Y = U�
k X is a k-dimensional representation of X

with Uk as the basis vectors.

By definition of the covariance matrix, the top singular vectors of C are the
directions of maximal variance in the data, and the associated singular values
are equal to these variances. Hence, PCA can also be viewed as projecting onto
the subspace of maximal variance. Under this interpretation, the first principal
component is derived from projection onto the direction of maximal variance, given
by the top singular vector of C. Similarly, the ith principal component, for 1 ≤ i ≤ k,
is derived from projection onto the ith direction of maximal variance, subject to
orthogonality constraints to the previous i − 1 directions of maximal variance (see
exercise 12.1 for more details).

12.2 Kernel Principal Component Analysis (KPCA)

In the previous section, we presented the PCA algorithm, which involved projecting
onto the singular vectors of the sample covariance matrix C. In this section, we
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Figure 12.2 Example of PCA. (a) Two-dimensional data points with features cap-
turing shoe size measured with different units. (b) One-dimensional representation
(blue squares) that captures the most variance in the data, generated by projecting
onto largest principal component (red line) of the mean-centered data points.

present a kernelized version of PCA, called KPCA. In the KPCA setting, Φ is
a feature mapping to an arbitrary RKHS (not necessarily to R

N ) and we work
exclusively with a kernel function K corresponding to the inner product in this
RKHS. The KPCA algorithm can thus be defined as a generalization of PCA in
which the input data is projected onto the top principle components in this RKHS.
We will show the relationship between PCA and KPCA by drawing upon the deep
connections among the SVDs of X, C and K. We then illustrate how various
manifold learning algorithms can be interpreted as special instances of KPCA.

Let K be a PDS kernel defined over X × X and define the kernel matrix as K =
X�X. Since X admits the following singular value decomposition: X = UΣV�, C
and K can be rewritten as follows:

C =
1
m

UΛU� K = VΛV� , (12.3)

where Λ = Σ2 is the diagonal matrix of the singular values of mC and U is the
matrix of the singular vectors of C (and mC).

Starting with the SVD of X, note that right multiplying by VΣ−1 and using the
relationship between Λ and Σ yields U = XVΛ−1/2. Thus, the singular vector u of
C associated to the singular value λ/m coincides with Xv√

λ
, where v is the singular

vector of K associated to λ. Now fix an arbitrary feature vector x = Φ(x) for
x ∈ X . Then, following the expression for Y in theorem 12.1, the one-dimensional
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representation of x derived by projection onto Pu = uu� is defined by

x�u = x�Xv√
λ

=
k�

x v√
λ

, (12.4)

where kx = (K(x1, x), . . . ,K(xm, x))�. If x is one of the data points, i.e., x = xi for
1 ≤ i ≤ m, then kx is the ith column of K and (12.4) can be simplified as follows:

x�u =
k�

x v√
λ

=
λvi√

λ
=

√
λvi , (12.5)

where vi is the ith component of v. More generally, the PCA solution of theorem 12.1
can be fully defined by the top k singular vectors of K, v1, . . . ,vk, and the
corresponding singular values. This alternative derivation of the PCA solution in
terms of K precisely defines the KPCA solution, providing a generalization of PCA
via the use of PDS kernels (see chapter 5 for more details on kernel methods).

12.3 KPCA and manifold learning

Several manifold learning techniques have been proposed as non-linear methods for
dimensionality reduction. These algorithms implicitly assume that high-dimensional
data lie on or near a low-dimensional non-linear manifold embedded in the input
space. They aim to learn this manifold structure by finding a low-dimensional
space that in some way preserves the local structure of high-dimensional input
data. For instance, the Isomap algorithm aims to preserve approximate geodesic
distances, or distances along the manifold, between all pairs of data points. Other
algorithms, such as Laplacian eigenmaps and locally linear embedding, focus only
on preserving local neighborhood relationships in the high-dimensional space. We
will next describe these classical manifold learning algorithms and then interpret
them as specific instances of KPCA.

12.3.1 Isomap

Isomap aims to extract a low-dimensional data representation that best preserves
all pairwise distances between input points, as measured by their geodesic distances
along the underlying manifold. It approximates geodesic distance assuming that L2

distance provides good approximations for nearby points, and for faraway points
it estimates distance as a series of hops between neighboring points. The Isomap
algorithm works as follows:

1. Find the t nearest neighbors for each data point based on L2 distance and
construct an undirected neighborhood graph, denoted by G, with points as nodes
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and links between neighbors as edges.

2. Compute the approximate geodesic distances, Δij , between all pairs of nodes
(i, j) by computing all-pairs shortest distances in G using, for instance, the Floyd-
Warshall algorithm.

3. Convert the squared distance matrix into a m×m similarity matrix by performing
double centering, i.e., compute KIso = − 1

2HΔH, where Δ is the squared distance
matrix, H = Im − 1

m11� is the centering matrix, Im is the m × m identity matrix
and 1 is a column vector of all ones (for more details on double centering see
exercise 12.2).

4. Find the optimal k-dimensional representation, Y = {yi}n
i=1, such that Y =

argminY′
∑

i,j

(‖y′
i − y′

j‖2
2 − Δ2

ij

)
. The solution is given by,

Y = (ΣIso,k)1/2U�
Iso,k (12.6)

where ΣIso,k is the diagonal matrix of the top k singular values of KIso and UIso,k

are the associated singular vectors.

KIso can naturally be viewed as a kernel matrix, thus providing a simple connection
between Isomap and KPCA. Note, however, that this interpretation is valid only
when KIso is in fact positive semidefinite, which is indeed the case in the continuum
limit for a smooth manifold.

12.3.2 Laplacian eigenmaps

The Laplacian eigenmaps algorithm aims to find a low-dimensional representation
that best preserves neighborhood relations as measured by a weight matrix W. The
algorithm works as follows:

1. Find t nearest neighbors for each point.

2. Construct W, a sparse, symmetric m × m matrix, where Wij = exp
( − ‖xi −

xj‖2
2/σ2

)
if (xi,xj) are neighbors, 0 otherwise, and σ is a scaling parameter.

3. Construct the diagonal matrix D, such that Dii =
∑

j Wij .

4. Find the k-dimensional representation by minimizing the weighted distance
between neighbors as,

Y = argmin
Y′

∑
i,j

Wij‖y′
i − y′

j‖2
2. (12.7)

This objective function penalizes nearby inputs for being mapped to faraway
outputs, with “nearness” measured by the weight matrix W. The solution to the
minimization in (12.7) is Y = U�

L,k, where L = D − W is the graph Laplacian
and U�

L,k are the bottom k singular vectors of L, excluding the last singular vector
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corresponding to the singular value 0 (assuming that the underlying neighborhood
graph is connected).

The solution to (12.7) can also be interpreted as finding the largest singular
vectors of L†, the pseudo-inverse of L. Defining KL = L† we can thus view Laplacian
Eigenmaps as an instance of KPCA in which the output dimensions are normalized
to have unit variance, which corresponds to setting λ = 1 in (12.5). Moreover, it
can be shown that KL is the kernel matrix associated with the commute times of
diffusion on the underlying neighborhood graph, where the commute time between
nodes i and j in a graph is the expected time taken for a random walk to start at
node i, reach node j and then return to i.

12.3.3 Locally linear embedding (LLE)

The Locally linear embedding (LLE) algorithm also aims to find a low-dimensional
representation that preserves neighborhood relations as measured by a weight
matrix W. The algorithm works as follows:

1. Find t nearest neighbors for each point.

2. Construct W, a sparse, symmetric m×m matrix, whose ith row sums to one and
contains the linear coefficients that optimally reconstruct xi from its t neighbors.
More specifically, if we assume that the ith row of W sums to one, then the
reconstruction error is(

xi −
∑
j∈Ni

Wijxj

)2

=
( ∑

j∈Ni

Wij(xi − xj)
)2

=
∑

j,k∈Ni

WijWikC′
jk (12.8)

where Ni is the set of indices of the neighbors of point xi and C′
jk = (xi−xj)�(xi−

xk) the local covariance matrix. Minimizing this expression with the constraint∑
j Wij = 1 gives the solution

Wij =
∑

k(C′−1)jk∑
st(C′−1)st

. (12.9)

Note that the solution can be equivalently obtained by first solving the system of
linear equations

∑
j C′

kjWij = 1, for k ∈ Ni, and then normalizing so that the
weights sum to one.

3. Find the k-dimensional representation that best obeys neighborhood relations as
specified by W, i.e.,

Y = argmin
Y′

∑
i

(
y′

i −
∑

j

Wijy′
j

)2

. (12.10)
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The solution to the minimization in (12.10) is Y = U�
M,k, where M = (I−W�)(I−

W�) and U�
M,k are the bottom k singular vectors of M, excluding the last singular

vector corresponding to the singular value 0.

As discussed in exercise 12.5, LLE coincides with KPCA used with a particular
kernel matrix KLLE whereby the output dimensions are normalized to have unit
variance (as in the case of Laplacian Eigenmaps).

12.4 Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma is a fundamental result in dimensionality reduc-
tion that states that any m points in high-dimensional space can be mapped to a
much lower dimension, k ≥ O( log m

ε2 ), without distorting pairwise distance between
any two points by more than a factor of (1 ± ε). In fact, such a mapping can be
found in randomized polynomial time by projecting the high-dimensional points
onto randomly chosen k-dimensional linear subspaces. The Johnson-Lindenstrauss
lemma is formally presented in lemma 12.3. The proof of this lemma hinges on
lemma 12.1 and lemma 12.2, and it is an example of the “probabilistic method”,
in which probabilistic arguments lead to a deterministic statement. Moreover, as
we will see, the Johnson-Lindenstrauss lemma follows by showing that the squared
length of a random vector is sharply concentrated around its mean when the vector
is projected onto a k-dimensional random subspace.

First, we prove the following property of the χ2-squared distribution (see defini-
tion C.6 in appendix), which will be used in lemma 12.2.

Lemma 12.1

Let Q be a random variable following a χ2-squared distribution with k degrees of
freedom. Then, for any 0 < ε < 1/2, the following inequality holds:

Pr[(1 − ε)k ≤ Q ≤ (1 + ε)k] ≥ 1 − 2e−(ε2−ε3)k/4 . (12.11)

Proof By Markov’s inequality, we can write

Pr[Q ≥ (1 + ε)k] = Pr[exp(λQ) ≥ exp(λ(1 + ε)k)] ≤ E[exp(λQ)]
exp(λ(1 + ε)k)

=
(1 − 2λ)−k/2

exp(λ(1 + ε)k)
,

where we used for the final equality the expression of the moment-generating
function of a χ2-squared distribution, E[exp(λQ)], for λ < 1/2 (equation C.14).
Choosing λ = ε

2(1+ε) < 1/2, which minimizes the right-hand side of the final
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equality, and using the identity 1 + ε ≤ exp(ε − (ε2 − ε3)/2) yield

Pr[Q ≥ (1 + ε)k] ≤
(

1 + ε

exp(ε)

)k/2

≤
(

exp
(
ε − ε2−ε3

2

)
exp(ε)

)k/2

= exp
(

− k

4
(ε2 − ε3)

)
.

The statement of the lemma follows by using similar techniques to bound Pr[Q ≤
(1 − ε)k] and by applying the union bound.

Lemma 12.2

Let x ∈ R
N , define k < N and assume that entries in A ∈ R

k×N are sampled
independently from the standard normal distribution, N(0, 1). Then, for any 0 <

ε < 1/2,

Pr
[
(1 − ε)‖x‖2 ≤ ‖ 1√

k
Ax‖2 ≤ (1 + ε)‖x‖2

]
≥ 1 − 2e−(ε2−ε3)k/4 . (12.12)

Proof Let x̂ = Ax and observe that

E[x̂2
j ] = E

[( N∑
i=1

Ajixi

)2
]

= E
[ N∑

i=1

A2
jix

2
i

]
=

N∑
i=1

x2
i = ‖x‖2 .

The second and third equalities follow from the independence and unit variance,
respectively, of the Aij . Now, define Tj = x̂j/‖x‖ and note that the Tjs are
independent standard normal random variables since the Aij are i.i.d. standard
normal random variables and E[x̂2

j ] = ‖x‖2. Thus, the variable Q defined by
Q =

∑k
j=1 T 2

j follows a χ2-squared distribution with k degrees of freedom and
we have

Pr
[
(1 − ε)‖x‖2 ≤ ‖x̂‖2

k
≤ (1 + ε)‖x‖2

]
= Pr

[
(1 − ε)k ≤

k∑
j=1

T 2
j ≤ (1 + ε)k

]
= Pr

[
(1 − ε)k ≤ Q ≤ (1 + ε)k

]
≥ 1 − 2e−(ε2−ε3)k/4 ,

where the final inequality holds by lemma 12.1, thus proving the statement of the
lemma.

Lemma 12.3 Johnson-Lindenstrauss
For any 0 < ε < 1/2 and any integer m > 4, let k = 20 log m

ε2 . Then for any set V of
m points in R

N , there exists a map f : R
N → R

k such that for all u,v ∈ V ,

(1 − ε)‖u − v‖2 ≤ ‖f(u) − f(v)‖2 ≤ (1 + ε)‖u − v‖2. (12.13)

Proof Let f = 1√
k
A where k < N and entries in A ∈ R

k×N are sampled
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independently from the standard normal distribution, N(0, 1). For fixed u,v ∈ V ,
we can apply lemma 12.2, with x = u − v, to lower bound the success probability
by 1 − 2e−(ε2−ε3)k/4. Applying the union bound over the O(m2) pairs in V , setting
k = 20

ε2 log m and upper bounding ε by 1/2, we have

Pr[success] ≥ 1 − 2m2e−(ε2−ε3)k/4 = 1 − 2m5ε−3 > 1 − 2m−1/2 > 0 .

Since the success probability is strictly greater than zero, a map that satisfies the
desired conditions must exist, thus proving the statement of the lemma.

12.5 Chapter notes

PCA was introduced in the early 1900s by Pearson [1901]. KPCA was introduced
roughly a century later, and our presentation of KPCA is a more concise derivation
of results given by Mika et al. [1999]. Isomap and LLE were pioneering works on
non-linear dimensionality reduction introduced byTenenbaum et al. [2000], Roweis
and Saul [2000]. Isomap itself is a generalization of a standard linear dimensionality
reduction technique called Multidimensional Scaling [Cox and Cox, 2000]. Isomap
and LLE led to the development of several related algorithms for manifold learning,
e.g., Laplacian Eigenmaps and Maximum Variance Unfolding [Belkin and Niyogi,
2001, Weinberger and Saul, 2006]. As shown in this chapter, classical manifold
learning algorithms are special instances of KPCA [Ham et al., 2004]. The Johnson-
Lindenstrauss lemma was introduced by Johnson and Lindenstrauss [1984], though
our proof of the lemma follows Vempala [2004]. Other simplified proofs of this lemma
have also been presented, including Dasgupta and Gupta [2003].

12.6 Exercises

12.1 PCA and maximal variance. Let X be an uncentered data matrix and let
x̄ = 1

m

∑
i xi be the sample mean of the columns of X.

(a) Show that the variance of one-dimensional projections of the data onto an
arbitrary vector u equals u�Cu, where C = 1

m

∑
i(xi − x̄)(xi − x̄)� is the

sample covariance matrix.

(b) Show that PCA with k = 1 projects the data onto the direction (i.e.,
u�u = 1) of maximal variance.

12.2 Double centering. In this problem we will prove the correctness of the double
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centering step in Isomap when working with Euclidean distances. Define X and x̄ as
in exercise 12.1, and define X∗ as the centered version of X, that is, let x∗

i = xi − x̄
be the ith column of X∗. Let K = X�X, and let D denote the Euclidean distance
matrix, i.e., Dij = ‖xi − xj‖.

(a) Show that Kij = 1
2 (Kii + Kjj + D2

ij).

(b) Show that K∗ = X∗�X∗ = K − 1
mK11� − 1

m11�K + 1
m2 11�K11�.

(c) Using the results from (a) and (b) show that

K∗
ij = −1

2

[
D2

ij − 1
m

m∑
k=1

D2
ik − 1

m

m∑
k=1

D2
kj + D̄

]
,

where D̄ = 1
m2

∑
u

∑
v D2

u,v is the mean of the m2 entries in D.

(d) Show that K∗ = − 1
2HDH.

12.3 Laplacian eigenmaps. Assume k = 1 and we seek a one-dimensional represen-
tation y. Show that (12.7) is equivalent to y = argminy′ y′�Ly′, where L is the
graph Laplacian.

12.4 Nyström method. Define the following block representation of a kernel matrix:

K =

[
W K�

21

K21 K22

]
and C =

[
W

K21

]
.

The Nyström method uses W ∈ R
l×l and C ∈ R

m×l to generate the approximation
K̃ = CW†C� ≈ K.

(a) Show that W is SPSD and that ‖K − K̃‖F = ‖K22 − K21W†K�
21‖F .

(b) Let K = X�X for some X ∈ R
N×m, and let X′ ∈ R

N×l be the first
l columns of X. Show that K̃ = X�PUX′X, where PUX′ is the orthogonal
projection onto the span of the left singular vectors of X′.

(c) Is K̃ SPSD?

(d) If rank(K) = rank(W) = r & m, show that K̃ = K. Note: this statement
holds whenever rank(K) = rank(W), but is of interest mainly in the low-rank
setting.

(e) If m = 20M and K is a dense matrix, how much space is required to store K
if each entry is stored as a double? How much space is required by the Nyström
method if l = 10K?
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12.5 Expression for KLLE . Show the connection between LLE and KPCA by
deriving the expression for KLLE .

12.6 Random projection, PCA, and nearest neighbors.

(a) Download the MNIST test set of handwritten digits at:

http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz.

Create a data matrix X ∈ R
N×m from the first m = 2,000 instances of this

dataset (the dimension of each instance should be N = 784).

(b) Find the ten nearest neighbors for each point in X, that is, compute Ni,10

for 1 ≤ i ≤ m, where Ni,t denotes the set of the t nearest neighbors for the ith
datapoint and nearest neighbors are defined with respect to the L2 norm. Also
compute Ni,50 for all i.

(c) Generate X̃ = AX, where A ∈ R
k×N , k = 100 and entries of A are

sampled independently from the standard normal distribution. Find the ten
nearest neighbors for each point in X̃, that is, compute Ñi,10 for 1 ≤ i ≤ m.

(d) Report the quality of approximation by computing score10 = 1
m

∑m
i=1 |Ni,10∩

Ñi,10|. Similarly, compute score50 = 1
m

∑m
i=1 |Ni,50 ∩ Ñi,10|.

(e) Generate two plots that show score10 and score50 as functions of k (i.e.,
perform steps (c) and (d) for k = {1, 10, 50, 100, 250, 500}). Provide a one- or
two-sentence explanation of these plots.

(f) Generate similar plots as in (e) using PCA (with various values of k) to gen-
erate X̃ and subsequently compute nearest neighbors. Are the nearest neighbor
approximations generated via PCA better or worse than those generated via
random projections? Explain why.



13 Learning Automata and Languages

This chapter presents an introduction to the problem of learning languages. This
is a classical problem explored since the early days of formal language theory and
computer science, and there is a very large body of literature dealing with related
mathematical questions. In this chapter, we present a brief introduction to this
problem and concentrate specifically on the question of learning finite automata,
which, by itself, has been a topic investigated in multiple forms by thousands of
technical papers. We will examine two broad frameworks for learning automata,
and for each, we will present an algorithm. In particular, we describe an algorithm
for learning automata in which the learner has access to several types of query, and
we discuss an algorithm for identifying a sub-class of the family of automata in the
limit.

13.1 Introduction

Learning languages is one of the earliest problems discussed in linguistics and
computer science. It has been prompted by the remarkable faculty of humans to
learn natural languages. Humans are capable of uttering well-formed new sentences
at an early age, after having been exposed only to finitely many sentences. Moreover,
even at an early age, they can make accurate judgments of grammaticality for new
sentences.

In computer science, the problem of learning languages is directly related to that
of learning the representation of the computational device generating a language.
Thus, for example, learning regular languages is equivalent to learning finite au-
tomata, or learning context-free languages or context-free grammars is equivalent
to learning pushdown automata.

There are several reasons for examining specifically the problem of learning
finite automata. Automata provide natural modeling representations in a variety
of different domains including systems, networking, image processing, text and
speech processing, logic and many others. Automata can also serve as simple or
efficient approximations for more complex devices. For example, in natural language
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Figure 13.1 (a) A graphical representation of a finite automaton. (b) Equivalent
(minimal) deterministic automaton.

processing, they can be used to approximate context-free languages. When it is
possible, learning automata is often efficient, though, as we shall see, the problem
is hard in a number of natural scenarios. Thus, learning more complex devices or
languages is even harder.

We consider two general learning frameworks: the model of efficient exact learning
and the model of identification in the limit . For each of these models, we briefly
discuss the problem of learning automata and describe an algorithm.

We first give a brief review of some basic automata definitions and algorithms,
then discuss the problem of efficient exact learning of automata and that of the
identification in the limit.

13.2 Finite automata

We will denote by Σ a finite alphabet. The length of a string x ∈ Σ∗ over that
alphabet is denoted by |x|. The empty string is denoted by ε, thus |ε| = 0. For any
string x = x1 · · ·xk ∈ Σ∗ of length k ≥ 0, we denote by x[j] = x1 · · ·xj its prefix of
length j ≤ k and define x[0] as ε.

Finite automata are labeled directed graphs equipped with initial and final states.
The following gives a formal definition of these devices.

Definition 13.1 Finite automata
A finite automaton A is a 5-tuple (Σ, Q, I, F,E) where Σ is a finite alphabet, Q a
finite set of states, I ⊆ Q a set of initial states, F ⊆ Q a set of final states, and
E ⊆ Q × (Σ ∪ {ε}) × Q a finite set of transitions.

Figure 13.1a shows a simple example of a finite automaton. States are represented
by circles. A bold circle indicates an initial state, a double circle a final state. Each
transition is represented by an arrow from its origin state to its destination state
with its label in Σ ∪ {ε}.

A path from an initial state to a final state is said to be an accepting path. An
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automaton is said to be trim if all of its states are accessible from an initial state
and admit a path to a final state, that is, if all of its states lie on an accepting
path. A string x ∈ Σ∗ is accepted by an automaton A iff x labels an accepting path.
For convenience, we will say that x ∈ Σ∗ is rejected by A when it is not accepted.
The set of all strings accepted by A defines the language accepted by A denoted by
L(A). The class of languages accepted by finite automata coincides with the family
of regular languages, that is, languages that can be described by regular expressions.

Any finite automaton admits an equivalent automaton with no ε-transition, that
is, no transition labeled with the empty string: there exists a general ε-removal
algorithm that takes as input an automaton and returns an equivalent automaton
with no ε-transition.

An automaton with no ε-transition is said to be deterministic if it admits a unique
initial state and if no two transitions sharing the same label leave any given state.
A deterministic finite automaton is often referred to by the acronym DFA, while
the acronym NFA is used for arbitrary automata, that is, non-deterministic finite
automata. Any NFA admits an equivalent DFA: there exists a general (exponential-
time) determinization algorithm that takes as input an NFA with no ε-transition
and returns an equivalent DFA. Thus, the class of languages accepted by DFAs
coincides with that of the languages accepted by NFAs, that is regular languages.
For any string x ∈ Σ∗ and DFA A, we denote by A(x) the state reached in A when
reading x from its unique initial state.

A DFA is said to be minimal if it admits no equivalent deterministic automaton
with a smaller number of states. There exists a general minimization algorithm
taking as input a deterministic automaton and returning a minimal one that runs
in O(|E| log |Q|). When the input DFA is acyclic, that is when it admits no path
forming a cycle, it can be minimized in linear time O(|Q|+ |E|). Figure 13.1b shows
the minimal DFA equivalent to the NFA of figure 13.1a.

13.3 Efficient exact learning

In the efficient exact learning framework, the problem consists of identifying a
target concept c from a finite set of examples in time polynomial in the size of the
representation of the concept and in an upper bound on the size of the representation
of an example. Unlike the PAC-learning framework, in this model, there is no
stochastic assumption, instances are not assumed to be drawn according to some
unknown distribution. Furthermore, the objective is to identify the target concept
exactly, without any approximation. A concept class C is said to be efficiently
exactly learnable if there is an algorithm for efficient exact learning of any c ∈ C.

We will consider two different scenarios within the framework of efficiently exact
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learning: a passive and an active learning scenario. The passive learning scenario is
similar to the standard supervised learning scenario discussed in previous chapters
but without any stochastic assumption: the learning algorithm passively receives
data instances as in the PAC model and returns a hypothesis, but here, instances
are not assumed to be drawn from any distribution. In the active learning scenario,
the learner actively participates in the selection of the training samples by using
various types of queries that we will describe. In both cases, we will focus more
specifically on the problem of learning automata.

13.3.1 Passive learning

The problem of learning finite automata in this scenario is known as the minimum
consistent DFA learning problem . It can be formulated as follows: the learner
receives a finite sample S = ((x1, y1), . . . , (xm, ym)) with xi ∈ Σ∗ and yi ∈ {−1, +1}
for any i ∈ [1,m]. If yi = +1, then xi is an accepted string, otherwise it is rejected.
The problem consists of using this sample to learn the smallest DFA A consistent
with S, that is the automaton with the smallest number of states that accepts the
strings of S with label +1 and rejects those with label −1. Note that seeking the
smallest DFA consistent with S can be viewed as following Occam’s razor principle.

The problem just described is distinct from the standard minimization of DFAs. A
minimal DFA accepting exactly the strings of S labeled positively may not have the
smallest number of states: in general there may be DFAs with fewer states accepting
a superset of these strings and rejecting the negatively labeled sample strings.
For example, in the simple case S = ((a,+1), (b,−1)), a minimal deterministic
automaton accepting the unique positively labeled string a or the unique negatively
labeled string b admits two states. However, the deterministic automaton accepting
the language a∗ accepts a and rejects b and has only one state.

Passive learning of finite automata turns out to be a computationally hard
problem. The following theorems present several negative results known for this
problem.

Theorem 13.1

The problem of finding the smallest deterministic automaton consistent with a set
of accepted or rejected strings is NP-complete.

Hardness results are known even for a polynomial approximation, as stated by the
following theorem.

Theorem 13.2

If P �= NP, then, no polynomial-time algorithm can be guaranteed to find a DFA
consistent with a set of accepted or rejected strings of size smaller than a polynomial
function of the smallest consistent DFA, even when the alphabet is reduced to just
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two elements.

Other strong negative results are known for passive learning of finite automata
under various cryptographic assumptions.

These negative results for passive learning invite us to consider alternative
learning scenarios for finite automata. The next section describes a scenario leading
to more positive results where the learner can actively participate in the data
selection process using various types of queries.

13.3.2 Learning with queries

The model of learning with queries corresponds to that of a (minimal) teacher or
oracle and an active learner. In this model, the learner can make the following two
types of queries to which an oracle responds:

membership queries: the learner requests the target label f(x) ∈ {−1, +1} of an
instance x and receives that label;

equivalence queries: the learner conjectures hypothesis h; he receives the response
yes if h = f , a counter-example otherwise.

We will say that a concept class C is efficiently exactly learnable with membership
and equivalence queries when it is efficiently exactly learnable within this model.

This model is not realistic, since no such oracle is typically available in practice.
Nevertheless, it provides a natural framework, which, as we shall see, leads to
positive results. Note also that for this model to be significant, equivalence must be
computationally testable. This would not be the case for some concept classes such
as that of context-free grammars, for example, for which the equivalence problem is
undecidable. In fact, equivalence must be further efficiently testable, otherwise the
response to the learner cannot be supplied in a reasonable amount of time.1

Efficient exact learning within this model of learning with queries implies the
following variant of PAC-learning: we will say that a concept class C is PAC-
learnable with membership queries if it is PAC-learnable by an algorithm that has
access to a polynomial number of membership queries.

Theorem 13.3

Let C be a concept class that is efficiently exactly learnable with membership and
equivalence queries, then C is PAC-learnable using membership queries.

1. For a human oracle, answering membership queries may also become very hard in some
cases when the queries are near the class boundaries. This may also make the model
difficult to adopt in practice.
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Proof Let A be an algorithm for efficiently exactly learning C using membership
and equivalence queries. Fix ε, δ > 0. We replace in the execution of A for learning
target c ∈ C, each equivalence query by a test of the current hypothesis on a
polynomial number of labeled examples. Let D be the distribution according to
which points are drawn. To simulate the tth equivalence query, we draw mt =
1
ε (log 1

δ + t log 2) points i.i.d. according to D to test the current hypothesis ht. If
ht is consistent with all of these points, then the algorithm stops and returns ht.
Otherwise, one of the points drawn does not belong to ht, which provides a counter-
example.

Since A learns c exactly, it makes at most T equivalence queries, where T is
polynomial in the size of the representation of the target concept and in an upper
bound on the size of the representation of an example. Thus, if no equivalence
query is positively responded by the simulation, the algorithm will terminate after T

equivalence queries and return the correct concept c. Otherwise, the algorithm stops
at the first equivalence query positively responded by the simulation. The hypothesis
it returns is not an ε-approximation only if the equivalence query stopping the
algorithm is incorrectly responded positively. By the union bound, since for any
fixed t ∈ [1, T ], Pr[R(ht) > ε] ≤ (1 − ε)mt , the probability that for some t ∈ [1, T ],
R(ht) > ε can be bounded as follows:

Pr[∃t ∈ [1, T ] : R(ht) > ε] ≤
T∑

i=1

Pr[R(ht) > ε]

≤
T∑

i=1

(1 − ε)mt ≤
T∑

i=1

e−mtε ≤
T∑

i=1

δ

2t
≤

+∞∑
i=1

δ

2t
= δ.

Thus, with probability at least 1 − δ, the hypothesis returned by the algorithm is
an ε-approximation. Finally, the maximum number of points drawn is

∑T
t=1 mt =

1
ε (T log 1

δ + T (T+1)
2 log 2), which is polynomial in 1/ε, 1/δ, and T . Since the rest

of the computational cost of A is also polynomial by assumption, this proves the
PAC-learning of C.

13.3.3 Learning automata with queries

In this section, we describe an algorithm for efficient exact learning of DFAs with
membership and equivalence queries. We will denote by A the target DFA and by
Â the DFA that is the current hypothesis of the algorithm. For the discussion of
the algorithm, we assume without loss of generality that A is a minimal DFA.

The algorithm uses two sets of strings, U and V . U is a set of access strings:
reading an access string u ∈ U from the initial state of A leads to a state A(u). The
algorithm ensures that the states A(u), u ∈ U , are all distinct. To do so, it uses a
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Figure 13.2 (a) Classification tree T , with U = {ε, b, ba} and V = {ε, a}. (b) Current
automaton bA constructed using T . (c) Target automaton A.

set V of distinguishing strings. Since A is minimal, for two distinct states q and q′

of A, there must exist at least one string that leads to a final state from q and not
from q′, or vice versa. That string helps distinguish q and q′. The set of strings V

help distinguish any pair of access strings in U . They define in fact a partition of
all strings of Σ∗.

The objective of the algorithm is to find at each iteration a new access string
distinguished from all previous ones, ultimately obtaining a number of access strings
equal to the number of states of A. It can then identify each state A(u) of A with
its access string u. To find the destination state of the transition labeled with a ∈ Σ
leaving state u, it suffices to determine, using the partition induced by V the access
string u′ that belongs to the same equivalence class as ua. The finality of each state
can be determined in a similar way.

Both sets U and V are maintained by the algorithm via a binary decision tree T

similar to those presented in chapter 8. Figure 13.2a shows an example. T defines
the partition of all strings induced by the distinguishing strings V . The leaves of T

are each labeled with a distinct u ∈ U and its internal nodes with a string v ∈ V .
The decision tree question defined by v ∈ V , given a string x ∈ Σ∗, is whether xv

is accepted by A, which is determined via a membership query. If accepted, x is
assigned to right sub-tree, otherwise to the left sub-tree, and the same is applied
recursively with the sub-trees until a leaf is reached. We denote by T (x) the label of
the leaf reached. For example, for the tree T of figure 13.2a and target automaton A

of figure 13.2c, T (baa) = b since baa is not accepted by A (root question) and baaa

is (question at node a). At its initialization step, the algorithm ensures that the
root node is labeled with ε, which is convenient to check the finality of the strings.

The tentative hypothesis DFA Â can be constructed from T as follows. We denote
by ConstructAutomaton() the corresponding function. A distinct state Â(u) is
created for each leaf u ∈ V . The finality of a state Â(u) is determined based on
the sub-tree of the root node that u belongs to: Â(u) is made final iff u belongs
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QueryLearnAutomata()

1 t ← MembershipQuery(ε)

2 T ← T0

3 Â ← A0

4 while (EquivalenceQuery(Â) �= true) do

5 x ← CounterExample()

6 if (T = T0) then

7 T ← T1 � nil replaced with x.

8 else j ← argmink A(x[k]) �≡T Â(x[k])

9 Split(Â(x[j − 1]))

10 Â ← ConstructAutomaton(T )

11 return Â

Figure 13.3 Algorithm for learning automata with membership and equivalence
queries. A0 is a single-state automaton with self-loops labeled with all a ∈ Σ. That
state is initial. It is final iff t = true. T0 is a tree with root node labeled with ε and
two leaves, one labeled with ε, the other with nil. the right leaf is labeled with ε

labels iff t = true. T1 is the tree obtained from T0 by replacing nil with x.

to the right sub-tree that is iff u = εu is accepted by A. The destination of the
transition labeled with a ∈ Σ leaving state Â(u) is the state Â(v) where v = T (ua).
Figure 13.2b shows the DFA Â constructed from the decision tree of figure 13.2a.
For convenience, for any x ∈ Σ∗, we denote by U(Â(x)) the access string identifying
state Â(x).

Figure 13.3 shows the pseudocode of the algorithm. The initialization steps at
lines 1–3 construct a tree T with a single internal node labeled with ε and one leaf
string labeled with ε, the other left undetermined and labeled with nil. They also
define a tentative DFA Â with a single state with self-loops labeled with all elements
of the alphabet. That single state is an initial state. It is made a final state only if
ε is accepted by the target DFA A, which is determined via the membership query
of line 1.

At each iteration of the loop of lines 4–11, an equivalence query is used. If Â is not
equivalent to A, then a counter-example string x is received (line 5). If T is the tree
constructed in the initialization step, then the leaf labeled with nil is replaced with
x (lines 6–7). Otherwise, since x is a counter-example, states A(x) and Â(x) have a
different finality; thus, the string x defining A(x) and the access string U(Â(x)) are
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Figure 13.4 Illustration of the splitting procedure Split( bA(x[j − 1])).

assigned to different equivalence classes by T . Thus, there exists a smallest j such
that A(x[j]) and Â(x[j]) are not equivalent, that is, such that the prefix x[j] of x

and the access string U(Â(x[j])) are assigned to different leaves by T . j cannot be 0
since the initialization ensures that Â(ε) is an initial state and has the same finality
as the initial state A(ε) of A. The equivalence of A(x[j]) and Â(x[j]) is tested by
checking the equality of T (x[j]) and T (U(Â(x[j]))), which can be both determined
using the tree T and membership queries (line 8).

Now, by definition, A(x[j − 1]) and Â(x[j − 1]) are equivalent, that is T assigns
x[j−1] to the leaf labeled with U(Â(x[j−1])). But, x[j−1] and U(Â(x[j−1])) must
be distinguished since A(x[j − 1]) and Â(x[j − 1]) admit transitions labeled with
the same label xj to two non-equivalent states. Let v be a distinguishing string for
A(x[j]) and Â(x[j]). v can be obtained as the least common ancestor of the leaves
labeled with x[j] and U(Â(x[j])). To distinguish x[j − 1] and U(Â(x[j − 1])), it
suffices to split the leaf of T labeled with T (x[j − 1]) to create an internal node xjv

dominating a leaf labeled with x[j − 1] and another one labeled with T (x[j − 1])
(line 9). Figure 13.4 illustrates this construction. Thus, this provides a new access
string x[j − 1] which, by construction, is distinguished from U(Â(x[j − 1])) and all
other access strings.

Thus, the number of access strings (or states of Â) increases by one at each
iteration of the loop. When it reaches the number of states of A, all states of A

are of the form A(u) for a distinct u ∈ U . A and Â have then the same number
of states and in fact A = Â. Indeed, let (A(u), a, A(u′)) be a transition in A, then
by definition the equality A(ua) = A(u′) holds. The tree T defines a partition
of all strings in terms of their distinguishing strings in A. Since in A, ua and u′

lead to the same state, they are assigned to the same leaf by T , that is, the leaf
labeled with u′. The destination of the transition from Â(u) with label a is found
by ConstructAutomaton() by determining the leaf in T assigned to ua, that
is, u′. Thus, by construction, the same transition (Â(u), a, Â(u′)) is created in Â.
Also, a state A(u) of A is final iff u accepted by A that is iff u is assigned to the
right sub-tree of the root node by T , which is the criterion determining the finality
of Â(u). Thus, the automata A and Â coincide.
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Figure 13.5 Illustration of the execution of Algorithm QueryLearnAutomata()
for the target automaton A. Each line shows the current decision tree T and the
tentative DFA bA constructed using T . When bA is not equivalent to A, the learner
receives a counter-example x indicated in the third column.

The following is the analysis of the running-time complexity of the algorithm. At
each iteration, one new distinguished access string is found associated to a distinct
state of A, thus, at most |A| states are created. For each counter-example x, at most
|x| tree operations are performed. Constructing Â requires O(|Σ||A|) tree operations.
The cost of a tree operation is O(|A|) since it consists of at most |A| membership
queries. Thus, the overall complexity of the algorithm is in O(|Σ||A|2 +n|A|), where
n is the maximum length of a counter-example. Note that this analysis assumes
that equivalence and membership queries are made in constant time.

Our analysis shows the following result.
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Theorem 13.4 Learning DFAs with queries
The class of all DFAs is efficiently exactly learnable using membership and equiva-
lence queries.

Figure 13.5 illustrates a full execution of the algorithm in a specific case.
In the next section, we examine a different learning scenario for automata.

13.4 Identification in the limit

In the identification in the limit framework , the problem consists of identifying a
target concept c exactly after receiving a finite set of examples. A class of languages
is said to be identifiable in the limit if there exists an algorithm that identifies
any language L in that class after examining a finite number of examples and its
hypothesis remains unchanged thereafter.

This framework is perhaps less realistic from a computational point of view since
it requires no upper bound on the number of instances or the efficiency of the
algorithm. Nevertheless, it has been argued by some to be similar to the scenario
of humans learning languages. In this framework as well, negative results hold for
the general problem of learning DFAs.

Theorem 13.5

Deterministic automata are not identifiable in the limit from positive examples.

Some sub-classes of finite automata can however be successfully identified in the
limit. Most algorithms for inference of automata are based on a state-partitioning
paradigm. They start with an initial DFA, typically a tree accepting the finite set
of sample strings available and the trivial partition: each block is reduced to one
state of the tree. At each iteration, they merge partition blocks while preserving
some congruence property. The iteration ends when no other merging is possible.
The final partition defines the automaton inferred as follows. Thus, the choice of
the congruence fully determines the algorithm and a variety of different algorithms
can be defined by varying that choice. A state-splitting paradigm can be similarly
defined starting from the single-state automaton accepting Σ∗. In this section, we
present an algorithm for learning reversible automata, which is a special instance
of the general state-partitioning algorithmic paradigm just described.

Let A = (Σ, Q, I, F,E) be a DFA and let π be a partition of Q. The DFA defined
by the partition π is called the automaton quotient of A and π. It is denoted by
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A/π and defined as follows: A/π = (Σ, π, Iπ, Fπ, Eπ) with

Iπ = {B ∈ π : I ∩ B �= ∅}
Fπ = {B ∈ π : F ∩ B �= ∅}
Eπ = {(B, a,B′) : ∃(q, a, q′) ∈ E | q ∈ B, q′ ∈ B′, B ∈ π,B′ ∈ π}.

Let S be a finite set of strings and let Pref(S) denote the set of prefixes of all strings
of S. A prefix-tree automaton accepting exactly the set of strings S is a particular
DFA denoted by PT (S) = (Σ, Pref(S), {ε}, S, ES) where Σ is the set of alphabet
symbols used in S and ES defined as follows:

ES = {(x, a, xa) : x ∈ Pref(S), xa ∈ Pref(S)}.

Figure 13.7a shows the prefix-tree automaton of a particular set of strings S.

13.4.1 Learning reversible automata

In this section, we show that the sub-class of reversible automata or reversible
languages can be identified in the limit.

Given a DFA A, we define its reverse AR as the automaton derived from A by
making the initial state final, the final states initial, and by reversing the direction of
every transition. The language accepted by the reverse of A is precisely the language
of the reverse (or mirror image) of the strings accepted by A.

Definition 13.2 Reversible automata
A finite automaton A is said to be reversible iff both A and AR are deterministic. A
language L is said to be reversible if it is the language accepted by some reversible
automaton.

Some direct consequences of this definition are that a reversible automaton A has
a unique final state and that its reverse AR is also reversible. Note also that a trim
reversible automaton A is minimal. Indeed, if states q and q′ in A are equivalent,
then, they admit a common string x leading both from q and from q′ to a final
state. But, by the reverse determinism of A, reading the reverse of x from the final
state must lead to a unique state, which implies that q = q′.

For any u ∈ Σ∗ and any language L ⊆ Σ∗, let SuffL(u) denote the set of all
possible suffixes in L for u:

SuffL(u) = {v ∈ Σ∗ : uv ∈ L}. (13.1)

SuffL(u) is also often denoted by u−1L. Observe that if L is a reversible language
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L, then the following implication holds for any two strings u, u′ ∈ Σ∗:

SuffL(u) ∩ SuffL(u′) �= ∅ =⇒ SuffL(u) = SuffL(u′). (13.2)

Indeed, let A be a reversible automaton accepting L. Let q be the state of A

reached from the initial state when reading u and q′ the one reached reading u′. If
v ∈ SuffL(u) ∩ SuffL(u′), then v can be read both from q and q′ to reach the final
state. Since AR is deterministic, reading back the reverse of v from the final state
must lead to a unique state, therefore q = q′, that is SuffL(u) = SuffL(u′).

Let A = (Σ, Q, {i0}, {f0}, E) be a reversible automaton accepting a reversible
language L. We define a set of strings SL as follows:

SL = {d[q]f [q] : q ∈ Q} ∪ {d[q], a, f [q′] : q, q′ ∈ Q, a ∈ Σ} ,

where d[q] is a string of minimum length from i0 to q, and f [q] a string of minimum
length from q to f0. As shown by the following proposition, SL characterizes the
language L in the sense that any reversible language containing SL must contain L.

Proposition 13.1

Let L be a reversible language. Then, L is the smallest reversible language containing
SL.

Proof Let L′ be a reversible language containing SL and let x = x1 · · ·xn be
a string accepted by L, with xk ∈ Σ for k ∈ [1, n] and n ≥ 1. For convenience,
we also define x0 as ε. Let (q0, x1, q1) · · · (qn−1, xn, qn) be the accepting path in
A labeled with x. We show by recurrence that SuffL′(x0 · · ·xk) = SuffL′(d[qk])
for all k ∈ [0, n]. Since d[q0] = d[i0] = ε, this clearly holds for k = 0. Now
assume that SuffL′(x0 · · ·xk) = SuffL′(d[qk]) for some k ∈ [0, n − 1]. This im-
plies immediately that SuffL′(x0 · · ·xkxk+1) = SuffL′(d[qk]xk+1). By definition,
SL contains both d[qk+1]f [qk+1] and d[qk]xk+1f [qk+1]. Since L′ includes SL, the
same holds for L′. Thus, f [qk+1] belongs to SuffL′(d[qk+1) ∩ SuffL′(d[qk]xk+1).
In view of (13.2), this implies that SuffL′(d[qk]xk+1) = SuffL′(d[qk+1]). Thus, we
have SuffL′(x0 · · ·xkxk+1) = SuffL′(d[qk+1]). This shows that SuffL′(x0 · · ·xk) =
SuffL′(d[qk]) holds for all k ∈ [0, n], in particular, for k = n. Note that since
qn = f0, we have f [qn] = ε, therefore d[qn] = d[qn]f [qn] is in S ⊆ L′, which
implies that SuffL′(d[qn]) contains ε and thus that SuffL′(x0 · · ·xk) contains ε. This
is equivalent to x = x0 · · ·xk ∈ L′.

Figure 13.6 shows the pseudocode of an algorithm for inferring a reversible
automaton from a sample S of m strings x1, . . . , xm. The algorithm starts by
creating a prefix-tree automaton A for S (line 1) and then iteratively defines a
partition π of the states of A, starting with the trivial partition π0 with one block
per state (line 2). The automaton returned is the quotient of A and the final partition
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LearnReversibleAutomata(S = (x1, . . . , xm))

1 A = (Σ, Q, {i0}, F, E) ← PT (S)

2 π ← π0 � trivial partition.

3 list ← {(f, f ′) : f ′ ∈ F} � f arbitrarily chosen in F .

4 while list �= ∅ do

5 Remove(list, (q1, q2))

6 if B(q1, π) �= B(q2, π) then

7 B1 ← B(q1, π)

8 B2 ← B(q2, π)

9 for all a ∈ Σ do

10 if (succ(B1, a) �= ∅) ∧ (succ(B2, a) �= ∅) then

11 Add(list, (succ(B1, a), succ(B2, a)))

12 if (pred(B1, a) �= ∅ ∧ (pred(B1, a) �= ∅) then

13 Add(list, (pred(B1, a), pred(B2, a)))

14 Update(succ, pred, B1, B2)

15 π ← Merge(π,B1, B2)

16 return A/π

Figure 13.6 Algorithm for learning reversible automata from a set of positive
strings S.

π defined.
The algorithm maintains a list list of pairs of states whose corresponding blocks

are to be merged, starting with all pairs of final states (f, f ′) for an arbitrarily
chosen final state f ∈ F (line 3). We denote by B(q, π) the block containing q based
on the partition π.

For each block B and alphabet symbol a ∈ Σ, the algorithm also maintains a
successor succ(B, a), that is, a state that can be reached by reading a from a state
of B; succ(B, a) = ∅ if no such state exists. It maintains similarly the predecessor
pred(B, a), which is a state that admits a transition labeled with a leading to a
state in B; pred(B, a) = ∅ if no such state exists.

Then, while list is not empty, a pair is removed from list and processed as
follows. If the pair (q1, q

′
1) has not been already merged, the pairs formed by the

successors and predecessors of B1 = B(q1, π) and B2 = B(q2, π) are added to list

(lines 10–13). Before merging blocks B1 and B2 into a new block B′ that defines



13.4 Identification in the limit 307

0 1
a

10

b

2
a

5

b
3

a
4

a

6
a

8

b

7
b

9
a

11
a

14

b

12
b

13
a

{5, 11}

{1, 3, 8, 12}

b

{6, 10}

a

{0, 2, 4, 7, 
9, 13, 14}

a b

b

a

a

b

(a) (b)

Figure 13.7 Example of inference of a reversible automaton. (a) Prefix-tree PT (S)

representing S = (ε, aa, bb, aaaa, abab, abba, baba). (b) Automaton bA returned by
LearnReversibleAutomata() for the input S. A double-direction arrow represents
two transitions with the same label with opposite directions. The language accepted
by bA is that of strings with an even number of as and bs.

a new partition π (line 15), the successor and predecessor values for the new block
B′ are defined as follows (line 14). For each symbol a ∈ Σ, succ(B′, a) = ∅ if
succ(B1, a) = succ(B2, a) = ∅, otherwise succ(B′, a) is set to one of succ(B1, a) if it
is non-empty, succ(B2, a) otherwise. The predecessor values are defined in a similar
way. Figure 13.7 illustrates the application of the algorithm in the case of a sample
with m = 7 strings.

Proposition 13.2

Let S be a finite set of strings and let A = PT (S) be the prefix-tree automaton de-
fined from S. Then, the final partition defined by LearnReversibleAutomata()
used with input S is the finest partition π for which A/π is reversible.

Proof Let T be the number of iterations of the algorithm for the input sample S.
We denote by πt the partition defined by the algorithm after t ≥ 1 iterations of the
loop, with πT the final partition.

A/πT is a reversible automaton since all final states are guaranteed to be merged
into the same block as a consequence of the initialization step of line 3 and, for
any block B, by definition of the algorithm, states reachable by a ∈ Σ from B are
contained in the same block, and similarly for those admitting a transition labeled
with a to a state of B.

Let π′ be a partition of the states of A for which A/π′ is reversible. We show
by recurrence that πT refines π′. Clearly, the trivial partition π0 refines π′. Assume
that πs refines π′ for all s ≤ t. πt+1 is obtained from π by merging two blocks
B(q1, πt) and B(q2, πt). Since πt refines π′, we must have B(q1, πt) ⊆ B(q1, π

′)
and B(q2, πt) ⊆ B(q2, π

′). To show that πt+1 refines π′, it suffices to prove that
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B(q1, π
′) = B(q2, π

′).
A reversible automaton has only one final state, therefore, for the partition π′,

all final states of A must be placed in the same block. Thus, if the pair (q1, q2)
processed at the (t + 1)th iteration is a pair of final states placed in list at the
initialization step (line 3), then we must have B(q1, π

′) = B(q2, π
′). Otherwise,

(q1, q2) was placed in list as a pair of successor or predecessor states of two states
q′1 and q′2 merged at a previous iteration s ≤ t. Since πs refines π′, q′1 and q′2 are in
the same block of π′ and since A/π′ is reversible, q1 and q2 must also be in the same
block as successors or predecessors of the same block for the same label a ∈ Σ, thus
B(q1, π

′) = B(q2, π
′).

Theorem 13.6

Let S be a finite set of strings and let A be the automaton returned by
LearnReversibleAutomata() when used with input S. Then, L(A) is the small-
est reversible language containing S.

Proof Let L be a reversible language containing S, and let A′ be a reversible
automaton with L(A′) = L. Since every string of S is accepted by A′, any
u ∈ Pref(S) can be read from the initial state of A′ to reach some state q(u)
of A′. Consider the automaton A′′ derived from A′ by keeping only states of the
form q(u) and transitions between such states. A′′ has the unique final state of A′

since q(u) is final for u ∈ S, and it has the initial state of A′, since ε is a prefix
of strings of S. Furthermore, A′′ directly inherits from A′ the property of being
deterministic and reverse deterministic. Thus, A′′ is reversible.

The states of A′′ define a partition of Pref(S): u, v ∈ Pref(S) are in the same
block iff q(u) = q(v). Since by definition of the prefix-tree PT (S), its states
can be identified with Pref(S), the states of A′′ also define a partition π′ of the
states of PT (S) and thus A′′ = PT (S)/π′. By proposition 13.2, the partition
π defined by algorithm LearnReversibleAutomata() run with input S is the
finest such that PT (S)/π is reversible. Therefore, we must have L(PT (S)/π) ⊆
L(PT (S)/π′) = L(A′′). Since A′′ is a sub-automaton of A′, L contains L(A′′) and
therefore L(PT (S)/π) = L(A), which concludes the proof.

For the following theorem, a positive presentation of a language L is an infinite
sequence (xn)n∈N such that {xn : n ∈ N} = L. Thus, in particular, for any x ∈ L

there exists n ∈ N such that x = xn. An algorithm identifies L in the limit from a
positive presentation if there exists N ∈ N such that for n ≥ N the hypothesis it
returns is L.

Theorem 13.7 Identification in the limit of reversible languages
Let L be a reversible language, then algorithm LearnReversibleAutomata()
identifies L in the limit from a positive presentation.
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Proof Let L be a reversible language. By proposition 13.1, L admits a finite
characteristic sample SL. Let (xn)n∈N be a positive presentation of L and let
Xn denote the union of the first n elements of the sequence. Since SL is finite,
there exists N ≥ 1 such that SL ⊆ XN . By theorem 13.6, for any n ≥ N ,
LearnReversibleAutomata() run on the finite sample Xn returns the smallest
reversible language L′ containing Xn a fortiori SL, which, by definition of SL, implies
that L′ = L.

The main operations needed for the implementation of the algorithm for learning
reversible automata are the standard find and union to determine the block a
state belongs to and to merge two blocks into a single one. Using a disjoint-set
data structure for these operations, the time complexity of the algorithm can be
shown to be in O(nα(n)), where n denotes the sum of the lengths of all strings
in the input sample S and α(n) the inverse of the Ackermann function, which is
essentially constant (α(n) ≤ 4 for n ≤ 1080).

13.5 Chapter notes

For an overview of finite automata and some related recent results, see Hopcroft
and Ullman [1979] or the more recent Handbook chapter by Perrin [1990], as well
as the series of books by M. Lothaire [Lothaire, 1982, 1990, 2005].

Theorem 13.1, stating that the problem of finding a minimum consistent DFA is
NP-hard, is due to Gold [1978]. This result was later extended by Angluin [1978].
Pitt and Warmuth [1993] further strengthened these results by showing that even an
approximation within a polynomial function of the size of the smallest automaton
is NP-hard (theorem 13.2). Their hardness results apply also to the case where
prediction is made using NFAs. Kearns and Valiant [1994] presented hardness results
of a different nature relying on cryptographic assumptions. Their results imply that
no polynomial-time algorithm can learn consistent NFAs polynomial in the size of
the smallest DFA from a finite sample of accepted and rejected strings if any of
the generally accepted cryptographic assumptions holds: if factoring Blum integers
is hard; or if the RSA public key cryptosystem is secure; or if deciding quadratic
residuosity is hard.

On the positive side, Trakhtenbrot and Barzdin [1973] showed that the smallest
finite automaton consistent with the input data can be learned exactly from a
uniform complete sample, whose size is exponential in the size of the automaton.
The worst-case complexity of their algorithm is exponential, but a better average-
case complexity can be obtained assuming that the topology and the labeling are
selected randomly [Trakhtenbrot and Barzdin, 1973] or even that the topology is
selected adversarially [Freund et al., 1993].
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Cortes, Kontorovich, and Mohri [2007a] study an approach to the problem of
learning automata based on linear separation in some appropriate high-dimensional
feature space; see also Kontorovich et al. [2006, 2008]. The mapping of strings to
that feature space can be defined implicitly using the rational kernels presented in
chapter 5, which are themselves defined via weighted automata and transducers.

The model of learning with queries was introduced by Angluin [1978], who also
proved that finite automata can be learned in time polynomial in the size of
the minimal automaton and that of the longest counter-example. Bergadano and
Varricchio [1995] further extended this result to the problem of learning weighted
automata defined over any field. Using the relationship between the size of a minimal
weighted automaton over a field and the rank of the corresponding Hankel matrix,
the learnability of many other concepts classes such as disjoint DNF can be shown
[Beimel et al., 2000]. Our description of an efficient implementation of the algorithm
of Angluin [1982] using decision trees is adapted from Kearns and Vazirani [1994].

The model of identification in the limit of automata was introduced and analyzed
by Gold [1967]. Deterministic finite automata were shown not to be identifiable in
the limit from positive examples [Gold, 1967]. But, positive results were given for
the identification in the limit of a number of sub-classes, such as the family of k-
reversible languages Angluin [1982] considered in this chapter. Positive results also
hold for learning subsequential transducers Oncina et al. [1993]. Some restricted
classes of probabilistic automata such as acyclic probabilistic automata were also
shown by Ron et al. [1995] to be efficiently learnable.

There is a vast literature dealing with the problem of learning automata. In
particular, positive results have been shown for a variety of sub-families of finite
automata in the scenario of learning with queries and learning scenarios of different
kinds have been introduced and analyzed for this problem. The results presented in
this chapter should therefore be viewed only as an introduction to that material.

13.6 Exercises

13.1 Minimal DFA. Show that a minimal DFA A also has the minimal number
of transitions among all other DFAs equivalent to A. Prove that a language L is
regular iff Q = {SuffL(u) : u ∈ Σ∗} is finite. Show that the number of states of a
minimal DFA A with L(A) = L is precisely the cardinality of Q.

13.2 VC-dimension of finite automata.

(a) What is the VC-dimension of the family of all finite automata? What does
that imply for PAC-learning of finite automata? Does this result change if we
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restrict ourselves to learning acyclic automata (automata with no cycles)?

(b) Show that the VC-dimension of the family of DFAs with at most n states
is bounded by O(|Σ|n log n).

13.3 PAC learning with membership queries. Give an example of a concept class C

that is efficiently PAC-learnable with membership queries but that is not efficiently
exactly learnable.

13.4 Learning monotone DNF formulae with queries. Show that the class of mono-
tone DNF formulae over n variables is efficiently exactly learnable using membership
and equivalence queries. (Hint : a prime implicant t of a formula f is a product of
literals such that t implies f but no proper sub-term of t implies f . Use the fact
that for monotone DNF, the number of prime implicants is at the most the number
of terms of the formula.)

13.5 Learning with unreliable query responses. Consider the problem where the
learner must find an integer x selected by the oracle within [1, n], where n ≥ 1 is
given. To do so, the learner can ask questions of the form (x ≤ m?) or (x > m?)
for m ∈ [1, n]. The oracle responds to these questions but may give an incorrect
response to k questions. How many questions should the learner ask to determine
x? (Hint : observe that the learner can repeat each question 2k + 1 times and use
the majority vote.)

13.6 Algorithm for learning reversible languages. What is the DFA A returned
by the algorithm for learning reversible languages when applied to the sample
S = {ab, aaabb, aabbb, aabbbb}? Suppose we add a new string to the sample, say
x = abab. How should A be updated to compute the result of the algorithm for
S ∪{x}? More generally, describe a method for updating the result of the algorithm
incrementally.

13.7 k-reversible languages. A finite automaton A′ is said to be k-deterministic if
it is deterministic modulo a lookahead k: if two distinct states p and q are both
initial, or are both reached from another state r by reading a ∈ Σ, then no string
u of length k can be read in A′ both from p and q. A finite automaton A is said to
be k-reversible if it is deterministic and if AR is k-deterministic. A language L is
k-reversible if it is accepted by some k-reversible automaton.

(a) Prove that L is k-reversible iff for any strings u, u′, v ∈ Σ∗ with |v| = k,

SuffL(uv) ∩ SuffL(u′v) �= ∅ =⇒ SuffL(uv) = SuffL(u′v).
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(b) Show that a k-reversible language admits a characteristic language.

(c) Show that the following defines an algorithm for learning k-reversible
automata. Proceed as in the algorithm for learning reversible automata but
with the following merging rule instead: merge blocks B1 and B2 if they can
be reached by the same string u of length k from some other block and if B1

and B2 are both final or have a common successor.



14 Reinforcement Learning

This chapter presents an introduction to reinforcement learning, a rich area of
machine learning with connections to control theory, optimization, and cognitive
sciences. Reinforcement learning is the study of planing and learning in a scenario
where a learner actively interacts with the environment to achieve a certain goal.
This active interaction justifies the terminology of agent used to refer to the learner.
The achievement of the agent’s goal is typically measured by the reward he receives
from the environment and which he seeks to maximize.

We first introduce the general scenario of reinforcement learning and then intro-
duce the model of Markov decision processes (MDPs), which is widely adopted in
this area, as well as essential concepts such as that of policy or policy value related
to this model. The rest of the chapter presents several algorithms for the planning
problem, which corresponds to the case where the environment model is known to
the agent, and then a series of learning algorithms for the more general case of an
unknown model.

14.1 Learning scenario

The general scenario of reinforcement learning is illustrated by figure 14.1. Unlike
the supervised learning scenario considered in previous chapters, here, the learner
does not passively receive a labeled data set. Instead, he collects information
through a course of actions by interacting with the environment . In response to
an action, the learner or agent, receives two types of information: his current state
in the environment, and a real-valued reward , which is specific to the task and its
corresponding goal.

There are several differences between the learning scenario of reinforcement
learning and that of supervised learning examined in most of the previous chapters.
Unlike the supervised learning scenario, in reinforcement learning there is no fixed
distribution according to which instances are drawn; the choice of a policy defines
the distribution. In fact, slight changes to the policy may have dramatic effects on
the rewards received. Furthermore, in general, the environment may not be fixed
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EnvironmentAgent

action

state

reward

Figure 14.1 Representation of the general scenario of reinforcement learning.

and could vary as a result of the actions selected by the agent. This may be a more
realistic model for some learning problems than the standard supervised learning.

The objective of the agent is to maximize his reward and thus to determine
the best course of actions, or policy , to achieve that objective. However, the
information he receives from the environment is only the immediate reward related
to the action just taken. No future or long-term reward feedback is provided by
the environment. An important aspect of reinforcement learning is to take into
consideration delayed rewards or penalties. The agent is faced with the dilemma
between exploring unknown states and actions to gain more information about the
environment and the rewards, and exploiting the information already collected to
optimize his reward. This is known as the exploration versus exploitation trade-
off inherent in reinforcement learning. Note that within this scenario, training and
testing phases are intermixed.

Two main settings can be distinguished here: the case where the environment
model is known to the agent, in which case his objective of maximizing the reward
received is reduced to a planning problem, and the case where the environment
model is unknown, in which case he faces a learning problem. In the latter case,
the agent must learn from the state and reward information gathered to both
gain information about the environment and determine the best action policy. This
chapter presents algorithmic solutions for both of these settings.

14.2 Markov decision process model

We first introduce the model of Markov decision processes (MDPs), a model of the
environment and interactions with the environment widely adopted in reinforcement
learning. An MDP is a Markovian process defined as follows.

Definition 14.1 MDPs
A Markov decision process (MDP) is defined by:
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a set of states S, possibly infinite.

a start state or initial state s0 ∈ S.

a set of actions A, possibly infinite.

a transition probability Pr[s′|s, a]: distribution over destination states s′ = δ(s, a).

a reward probability Pr[r′|s, a]: distribution over rewards returned r′ = r(s, a).

The model is Markovian because the transition and reward probabilities depend
only on the current state s and not the entire history of states and actions taken.
This definition of MDP can be further generalized to the case of non-discrete state
and action sets.

In a discrete-time model, actions are taken at a set of decision epochs {0, . . . , T},
and this is the model we will adopt in what follows. This model can also be
straightforwardly generalized to a continuous-time one where actions are taken at
arbitrary points in time.

When T is finite, the MDP is said to have a finite horizon. Independently of the
finiteness of the time horizon, an MDP is said to be finite when both S and A are
finite sets. Here, we are considering the general case where the reward r(s, a) at
state s when taking action a is a random variable. However, in many cases, the
reward is assumed to be a deterministic function of the pair of the state and action
pair (s, a).

Figure 14.2 illustrates the model corresponding to an MDP. At time t ∈ [0, T ]
the state observed by the agent is st and he takes action at ∈ A. The state reached
is st+1 (with probability Pr[st+1|at, st]) and the reward received rt+1 ∈ R (with
probability Pr[rt+1|at, st]).

Many real-world tasks can be represented by MDPs. Figure 14.3 gives the example
of a simple MDP for a robot picking up balls on a tennis court.

14.3 Policy

The main problem for an agent in an MDP environment is to determine the action
to take at each state, that is, an action policy .

14.3.1 Definition

Definition 14.2 Policy
A policy is a mapping π : S → A.

More precisely, this is the definition of a stationary policy since the choice of the
action does not depend on the time. More generally, we could define a non-stationary
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st st+1 st+2

at/rt+1 at+1/rt+2

Figure 14.2 Illustration of the states and transitions of an MDP at different times.

policy as a sequence of mappings πt : S → A indexed by t. In particular, in the finite
horizon case, typically a non-stationary policy is necessary.

The agent’s objective is to find a policy that maximizes his expected (reward)
return. The return he receives following a policy π along a specific sequence of states
st, . . . , sT is defined as follows:

finite horizon (T < ∞):
∑T−t

τ=0 r(st+τ , π(st+τ )).

infinite horizon (T = ∞):
∑T−t

τ=0 γτr(st+τ , π(st+τ )), where γ ∈ [0, 1) is a constant
factor less than one used to discount future rewards.

Note that the return is a single scalar summarizing a possibly infinite sequence
of immediate rewards. In the discounted case, early rewards are viewed as more
valuable than later ones.

This leads to the following definition of the value of a policy at each state.

14.3.2 Policy value

Definition 14.3 Policy value
The value Vπ(s) of a policy π at state s ∈ S is defined as the expected reward
returned when starting at s and following policy π:

finite horizon: Vπ(s) = E
[∑T−t

τ=0 r(st+τ , π(st+τ ))|st = s
]
;

infinite discounted horizon: Vπ(s) = E
[∑T−t

τ=0 γτr(st+τ , π(st+τ ))|st = s
]
;

where the expectations are over the random selection of the states st and the reward
values rt+1. An infinite undiscounted horizon is also often considered based on the
limit of the average reward, when it exists.

As we shall see later, there exists a policy that is optimal for any start state. In view
of the definition of the policy values, seeking the optimal policy can be equivalently
formulated as determining a policy with maximum value at all states.

14.3.3 Policy evaluation

The value of a policy at state s can be expressed in terms of its values at other
states, forming a system of linear equations.
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start  search/[.1, R1]

other

search/[.9, R1]  carry/[.5, R3]

carry/[.5, -1] pickup/[1, R2]

Figure 14.3 Example of a simple MDP for a robot picking up balls on a tennis
court. The set of actions is A = {search, carry, pickup} and the set of states reduced
to S = {start, other}. Each transition is labeled with the action followed by the
probability of the transition probability and the reward received after taking that
action. R1, R2, and R3 are real numbers indicating the reward associated to each
transition (case of deterministic reward).

Proposition 14.1 Bellman equation

The values Vπ(s) of policy π at states s ∈ S for an infinite horizon MDP obey the
following system of linear equations:

∀s ∈ S, Vπ(s) = E[r(s, π(s)] + γ
∑
s′

Pr[s′|s, π(s)]Vπ(s′). (14.1)

Proof We can decompose the expression of the policy value as a sum of the first
term and the rest of the terms:

Vπ(s) = E
[ T−t∑

τ=0

γτr(st+τ , π(st+τ )) | st = s

]
= E[r(s, π(s)] + γ E

[ T−t∑
τ=0

γτr(st+1+τ , π(st+1+τ )) | st = s

]
= E[r(s, π(s)] + γ E[Vπ(δ(s, π(s)))],

since we can recognize the expression of Vπ(δ(s, π(s))) in the expectation of the
second line.

The Bellman equations can be rewritten as

V = R + γPV, (14.2)

using the following notation: P denotes the transition probability matrix defined
by Ps,s′ = Pr[s′|s, π(s)] for all s, s′ ∈ S; V is the value column matrix whose sth
component is Vs = Vπ(s); and R the reward column matrix whose sth component
is Rs = E[r(s, π(s)]. V is typically the unknown variable in the Bellman equations
and is determined by solving for it. The following theorem shows that for a finite
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MDP this system of linear equations admits a unique solution.

Theorem 14.1

For a finite MDP, Bellman’s equation admits a unique solution given by

V0 = (I − γP)−1R. (14.3)

Proof The Bellman equation (14.2) can be equivalently written as

(I − γP)V = R.

Thus, to prove the theorem it suffices to show that (I− γP) is invertible. To do so,
note that the norm infinity of P can be computed using its stochasticity properties:

‖P‖∞ = max
s

∑
s′

|Pss′ | = max
s

∑
s′

Pr[s′|s, π(s)] = 1.

This implies that ‖γP‖∞ = γ < 1. The eigenvalues of P are thus all less than one,
and (I − γP) is invertible.

Thus, for a finite MDP, when the transition probability matrix P and the reward
expectations R are known, the value of policy π at all states can be determined by
inverting a matrix.

14.3.4 Optimal policy

The objective of the agent can be reformulated as that of seeking the optimal policy
defined as follows.

Definition 14.4 Optimal policy
A policy π∗ is optimal if it has maximal value for all states s ∈ S.

Thus, by definition, for any s ∈ S, Vπ∗(s) = maxπ Vπ(s). We will use the shorter
notation V ∗ instead of Vπ∗ . V ∗(s) is the maximal cumulative reward the agent can
expect to receive when starting at state s.

Definition 14.5 State-action value function
The optimal state-action value function Q∗ is defined for all (s, a) ∈ S × A as the
expected return for taking action a ∈ A at state s ∈ S and then following the optimal
policy:

Q∗(s, a) = E[r(s, a)] + γ
∑
s′∈S

Pr[s′ | s, a]V ∗(s′). (14.4)
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It is not hard to see then that the optimal policy values are related to Q∗ via

∀s ∈ S, V ∗(s) = max
a∈A

Q∗(s, a). (14.5)

Indeed, by definition, V ∗(s) ≤ maxa∈A Q∗(s, a) for all s ∈ S. If for some s we had
V ∗(s) < maxa∈A Q∗(s, a), then then maximizing action would define a better policy.
Observe also that, by definition of the optimal policy, we have

∀s ∈ S, π∗(s) = argmax
a∈A

Q∗(s, a). (14.6)

Thus, the knowledge of the state-value function Q∗ is sufficient for the agent
to determine the optimal policy, without any direct knowledge of the reward or
transition probabilities. Replacing Q∗ by its definition in (14.5) gives the following
system of equations for the optimal policy values V ∗(s):

V ∗(s) = max
a∈A

{
E[r(s, a)] + γ

∑
s′∈S

Pr[s′|s, a]V ∗(s′)
}

, (14.7)

also known as Bellman equations. Note that this new system of equations is not
linear due to the presence of the max operator. It is distinct from the previous linear
system we defined under the same name in (14.1) and (14.2).

14.4 Planning algorithms

In this section, we assume that the environment model is known. That is, the
transition probability Pr[s′|s, a] and the expected reward E[r(s, a)] for all s, s′ ∈ S

and a ∈ A are assumed to be given. The problem of finding the optimal policy then
does not require learning the parameters of the environment model or estimating
other quantities helpful in determining the best course of actions, it is purely a
planning problem.

This section discusses three algorithms for this planning problem: the value
iteration algorithm, the policy iteration algorithm, and a linear programming
formulation of the problem.

14.4.1 Value iteration

The value iteration algorithm seeks to determine the optimal policy values V ∗(s)
at each state s ∈ S, and thereby the optimal policy. The algorithm is based on
the Bellman equations (14.7). As already indicated, these equations do not form
a system of linear equations and require a different technique to determine the
solution. The main idea behind the design of the algorithm is to use an iterative
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ValueIteration(V0)

1 V ← V0 � V0 arbitrary value

2 while ‖V − Φ(V)‖ ≥ (1−γ)ε
γ do

3 V ← Φ(V)

4 return Φ(V)

Figure 14.4 Value iteration algorithm.

method to solve them: the new values of V (s) are determined using the Bellman
equations and the current values. This process is repeated until a convergence
condition is met.

For a vector V in R
|S|, we denote by V (s) its sth coordinate, for any s ∈ S. Let

Φ : R
|S| → R

|S| be the mapping defined based on Bellman’s equations (14.7):

∀s ∈ S, [Φ(V)](s) = max
a∈A

{
E[r(s, a)] + γ

∑
s′∈S

Pr[s′|s, a]V (s′)
}

. (14.8)

The maximizing actions a ∈ A in these equations define an action to take at each
state s ∈ S, that is a policy π. We can thus rewrite these equations in matrix terms
as follows:

Φ(V) = max
π

{Rπ + γPπV}, (14.9)

where Pπ is the transition probability matrix defined by (Pπ)ss′ = Pr[s′|s, π(s)]
for all s, s′ ∈ S, and Rπ the reward vector defined by (Rπ)s = E[r(s, π(s)], for all
s ∈ S.

The algorithm is directly based on (14.9). The pseudocode is given above. Starting
from an arbitrary policy value vector V0 ∈ R

|S|, the algorithm iteratively applies
Φ to the current V to obtain a new policy value vector until ‖V − Φ(V)‖ <
(1−γ)ε

γ , where ε > 0 is a desired approximation. The following theorem proves the
convergence of the algorithm to the optimal policy values.

Theorem 14.2

For any initial value V0, the sequence defined by Vn+1 = Φ(Vn) converges to V∗.

Proof We first show that Φ is γ-Lipschitz for the ‖ · ‖∞.1 For any s ∈ S and

1. A β-Lipschitz function with β < 1 is also called β-contracting . In a complete metric
space, that is a metric space where any Cauchy sequence converges to a point of that
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V ∈ R
|S|, let a∗(s) be the maximizing action defining Φ(V)(s) in (14.8). Then, for

any s ∈ S and any U ∈ R
|S|,

Φ(V)(s) − Φ(U)(s) ≤ Φ(V)(s) −
(

E[r(s, a∗(s))] + γ
∑
s′∈S

Pr[s′ | s, a∗(s)]U(s′)
)

= γ
∑
s′∈S

Pr[s′|s, a∗(s)][V(s′) − U(s′)]

≤ γ
∑
s′∈S

Pr[s′|s, a∗(s)]‖V − U‖∞ = γ‖V − U‖∞.

Proceeding similarly with Φ(U)(s) − Φ(V)(s), we obtain Φ(U)(s) − Φ(V)(s) ≤
γ‖V − U‖∞. Thus, |Φ(V)(s) − Φ(U)(s)| ≤ γ‖V − U‖∞ for all s, which implies

‖Φ(V) − Φ(U)‖∞ ≤ γ‖V − U‖∞,

that is the γ-Lipschitz property of Φ. Now, by Bellman equations (14.7), V∗ =
Φ(V∗), thus for any n ∈ N,

‖V∗ − Vn+1‖∞ = ‖Φ(V∗) − Φ(Vn)‖∞ ≤ γ‖V∗ − Vn‖∞ ≤ γn+1‖V∗ − V0‖∞,

which proves the convergence of the sequence to V∗ since γ ∈ (0, 1).

The ε-optimality of the value returned by the algorithm can be shown as follows.
By the triangle inequality and the γ-Lipschitz property of Φ, for any n ∈ N,

‖V∗ − Vn+1‖∞ ≤ ‖V∗ − Φ(Vn+1)‖∞ + ‖Φ(Vn+1) − Vn+1‖∞
= ‖Φ(V∗) − Φ(Vn+1)‖∞ + ‖Φ(Vn+1) − Φ(Vn)‖∞
≤ γ‖V∗ − Vn+1‖∞ + γ‖Vn+1 − Vn‖∞.

Thus, if Vn+1 is the policy value returned by the algorithm, we have

‖V∗ − Vn+1‖∞ ≤ γ

1 − γ
‖Vn+1 − Vn‖∞ ≤ ε.

The convergence of the algorithm is in O(log 1
ε ) number of iterations. Indeed, observe

that

‖Vn+1−Vn‖∞ = ‖Φ(Vn)−Φ(Vn−1)‖∞ ≤ γ‖Vn−Vn−1‖∞ ≤ γn‖Φ(V0)−V0‖∞.

Thus, if n is the largest integer such that (1−γ)ε
γ ≤ ‖Vn+1 − Vn‖∞, it must verify

space, a β-contracting function f admits a fixed point : any sequence (f(xn))n∈N converges
to some x with f(x) = x. R

N , N ≥ 1, or, more generally, any finite-dimensional vector
space, is a complete metric space.
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1

a/[3/4, 2]

2

a/[1/4, 2]

b/[1, 2]

d/[1, 3]

c/[1, 2]

Figure 14.5 Example of MDP with two states. The state set is reduced to
S = {1, 2} and the action set to A = {a, b, c, d}. Only transitions with non-zero
probabilities are represented. Each transition is labeled with the action taken
followed by a pair [p, r] after a slash separator, where p is the probability of the
transition and r the expected reward for taking that transition.

(1−γ)ε
γ ≤ γn‖Φ(V0) − V0‖∞ and therefore n ≤ O

(
log 1

ε

)
.2

Figure 14.5 shows a simple example of MDP with two states. The iterated values
of these states calculated by the algorithm for that MDP are given by

Vn+1(1) = max
{

2 + γ
(3

4
Vn(1) +

1
4
Vn(2)

)
, 2 + γVn(2)

}
Vn+1(2) = max

{
3 + γVn(1), 2 + γVn(2)

}
.

For V0(1) = −1, V0(2) = 1, and γ = 1/2, we obtain V1(1) = V1(2) = 5/2.
Thus, both states seem to have the same policy value initially. However, by the fifth
iteration, V5(1) = 4.53125, V5(2) = 5.15625 and the algorithm quickly converges
to the optimal values V∗(1) = 14/3 and V∗(2) = 16/3 showing that state 2 has a
higher optimal value.

14.4.2 Policy iteration

An alternative algorithm for determining the best policy consists of using policy
evaluations, which can be achieved via a matrix inversion, as shown by theorem 14.1.
The pseudocode of the algorithm known as policy iteration algorithm is given in
figure 14.6. Starting with an arbitrary action policy π0, the algorithm repeatedly
computes the value of the current policy π via that matrix inversion and greedily
selects the new policy as the one maximizing the right-hand side of the Bellman
equations (14.9).

The following theorem proves the convergence of the policy iteration algorithm.

Theorem 14.3

2. Here, the O-notation hides the dependency on the discount factor γ. As a function of
γ, the running time is not polynomial.
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PolicyIteration(π0)

1 π ← π0 � π0 arbitrary policy

2 π′ ← nil

3 while (π �= π′) do

4 V ← Vπ � policy evaluation: solve (I − γPπ)V = Rπ.

5 π′ ← π

6 π ← argmaxπ{Rπ + γPπV} � greedy policy improvement.

7 return π

Figure 14.6 Policy iteration algorithm.

Let (Vn)n∈N be the sequence of policy values computed by the algorithm, then, for
any n ∈ N, the following inequalities hold:

Vn ≤ Vn+1 ≤ V∗. (14.10)

Proof Let πn+1 be the policy improvement at the nth iteration of the algorithm.
We first show that (I − γPπn+1)

−1 preserves ordering, that is, for any column
matrices X and Y in R

|S|, if (Y − X) ≥ 0, then (I − γPπn+1)
−1(Y − X) ≥ 0.

As shown in the proof of theorem 14.1, ‖γP‖∞ = γ < 1. Since the radius of
convergence of the power series (1−x)−1 is one, we can use its expansion and write

(I − γPπn+1)
−1 =

∞∑
k=0

(γPπn+1)
k.

Thus, if Z = (Y − X) ≥ 0, then (I − γPπn+1)
−1Z =

∑∞
k=0(γPπn+1)

kZ ≥ 0, since
the entries of matrix Pπn+1 and its powers are all non-negative as well as those of
Z.

Now, by definition of πn+1, we have

Rπn+1 + γPπn+1Vn ≥ Rπn + γPπnVn = Vn,

which shows that Rπn+1 ≥ (I−γPπn+1)Vn. Since (I−γPπn+1)
−1 preserves ordering,

this implies that Vn+1 = (I − γPπn+1)
−1Rπn+1 ≥ Vn, which concludes the proof

of the theorem.

Note that two consecutive policy values can be equal only at the last iteration of
the algorithm. The total number of possible policies is |A||S|, thus this constitutes
a straightforward upper bound on the maximal number of iterations. Better upper
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bounds of the form O
( |A||S|

|S|
)

are known for this algorithm.
For the simple MDP shown by figure 14.5, let the initial policy π0 be defined by

π0(1) = b, π0(2) = c. Then, the system of linear equations for evaluating this policy
is {

Vπ0(1) = 1 + γVπ0(2)

Vπ0(2) = 2 + γVπ0(2),

which gives Vπ0(1) = 1+γ
1−γ and Vπ0(2) = 2

1−γ .

Theorem 14.4

Let (Un)n∈N be the sequence of policy values generated by the value iteration
algorithm, and (Vn)n∈N the one generated by the policy iteration algorithm. If
U0 = V0, then,

∀n ∈ N, Un ≤ Vn ≤ V∗. (14.11)

Proof We first show that the function Φ previously introduced is monotonic. Let
U and V be such that U ≤ V and let π be the policy such that Φ(U) = Rπ+γPπU.
Then,

Φ(U) ≤ Rπ + γPπV ≤ max
π′

{Rπ′ + γPπ′V} = Φ(V).

The proof is by induction on n. Assume that Un ≤ Vn, then by the monotonicity
of Φ, we have

Un+1 = Φ(Un) ≤ Φ(Vn) = max
π

{Rπ + γPπVn}.

Let πn+1 be the maximizing policy, that is, πn+1 = argmaxπ{Rπ +γPπVn}. Then,

Φ(Vn) = Rπn+1 + γPπn+1Vn ≤ Rπn+1 + γPπn+1Vn+1 = Vn+1,

and thus Un+1 ≤ Vn+1.

The theorem shows that the policy iteration algorithm converges in a smaller
number of iterations than the value iteration algorithm due to the optimal policy.
But, each iteration of the policy iteration algorithm requires computing a policy
value, that is, solving a system of linear equations, which is more expensive to
compute that an iteration of the value iteration algorithm.

14.4.3 Linear programming

An alternative formulation of the optimization problem defined by the Bellman
equations (14.7) is via linear programming (LP), that is an optimization prob-
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lem with a linear objective function and linear constraints. LPs admit (weakly)
polynomial-time algorithmic solutions. There exist a variety of different methods
for solving relative large LPs in practice, using the simplex method, interior-point
methods, or a variety of special-purpose solutions. All of these methods could be
applied in this context.

By definition, the equations (14.7) are each based on a maximization. These
maximizations are equivalent to seeking to minimize all elements of {V (s) : s ∈ S}
under the constraints V (s) ≥ E[r(s, a)] + γ

∑
s′∈S Pr[s′|s, a]V (s′), (s ∈ S). Thus,

this can be written as the following LP for any set of fixed positive weights α(s) > 0,
(s ∈ S):

min
V

∑
s∈S

α(s)V (s) (14.12)

subject to ∀s ∈ S, ∀a ∈ A, V (s) ≥ E[r(s, a)] + γ
∑
s′∈S

Pr[s′|s, a]V (s′),

where α > 0 is the vector with the sth component equal to α(s).3 To make each
coefficient α(s) interpretable as a probability, we can further add the constraints that∑

s∈S α(s) = 1. The number of rows of this LP is |S||A| and its number of columns
|S|. The complexity of the solution techniques for LPs is typically more favorable in
terms of the number of rows than the number of columns. This motivates a solution
based on the equivalent dual formulation of this LP which can be written as

max
x

∑
s∈S,a∈A

E[r(s, a)]x(s, a) (14.13)

subject to ∀s ∈ S,
∑
a∈A

x(s′, a) = α(s′) + γ
∑

s∈S,a∈A

Pr[s′|s, a] x(s′, a)

∀s ∈ S, ∀a ∈ A, x(s, a) ≥ 0,

and for which the number of rows is only |S| and the number of columns |S||A|.
Here x(s, a) can be interpreted as the probability of being in state s and taking
action a.

14.5 Learning algorithms

This section considers the more general scenario where the environment model of
an MDP, that is the transition and reward probabilities , is unknown. This matches

3. Let us emphasize that the LP is only in terms of the variables V (s), as indicated by
the subscript of the minimization operator, and not in terms of V (s) and α(s).
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many realistic applications of reinforcement learning where, for example, a robot is
placed in an environment that it needs to explore in order to reach a specific goal.

How can an agent determine the best policy in this context? Since the environment
models are not known, he may seek to learn them by estimating transition or reward
probabilities. To do so, as in the standard case of supervised learning, the agent
needs some amount of training information. In the context of reinforcement learning
with MDPs, the training information is the sequence of immediate rewards the agent
receives based on the actions he has taken.

There are two main learning approaches that can be adopted. One known as the
model-free approach consists of learning an action policy directly. Another one, a
model-based approach, consists of first learning the environment model, and then
use that to learn a policy. The Q-learning algorithm we present for this problem is
widely adopted in reinforcement learning and belongs to the family of model-free
approaches.

The estimation and algorithmic methods adopted for learning in reinforcement
learning are closely related to the concepts and techniques in stochastic approxi-
mation. Thus, we start by introducing several useful results of this field that will
be needed for the proofs of convergence of the reinforcement learning algorithms
presented.

14.5.1 Stochastic approximation

Stochastic approximation methods are iterative algorithms for solving optimization
problems whose objective function is defined as the expectation of some random
variable, or to find the fixed point of a function H that is accessible only through
noisy observations. These are precisely the type of optimization problems found in
reinforcement learning. For example, for the Q-learning algorithm we will describe,
the optimal state-action value function Q∗ is the fixed point of some function H

that is defined as an expectation and thus not directly accessible.
We start with a basic result whose proof and related algorithm show the flavor

of more complex ones found in stochastic approximation. The theorem is a gener-
alization of a result known as the strong law of large numbers. It shows that under
some conditions on the coefficients, an iterative sequence of estimates μm converges
almost surely (a.s.) to the mean of a bounded random variable.

Theorem 14.5 Mean estimation
Let X be a random variable taking values in [0, 1] and let x0, . . . , xm be i.i.d. values
of X. Define the sequence (μm)m∈N by

μm+1 = (1 − αm)μm + αmxm, (14.14)
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with μ0 = x0, αm ∈ [0, 1],
∑

m≥0 αm = +∞ and
∑

m≥0 α2
m < +∞. Then,

μm
a.s−−→ E[X]. (14.15)

Proof We give the proof of the L2 convergence. The a.s. convergence is shown
later for a more general theorem. By the independence assumption, for m ≥ 0,

Var[μm+1] = (1 − αm)2 Var[μm] + α2
m Var[xm] ≤ (1 − αm) Var[μm] + α2

m. (14.16)

Let ε > 0 and suppose that there exists N ∈ N such that for all m ≥ N , Var[μm] ≥ ε.
Then, for m ≥ N ,

Var[μm+1] ≤ Var[μm] − αm Var[μm] + α2
m ≤ Var[μm] − αmε + α2

m,

which implies, by reapplying this inequality, that

Var[μm+N ] ≤ Var[μN ] − ε

m+N∑
n=N

αn +
m+N∑
n=N

α2
n︸ ︷︷ ︸

→−∞ when m→∞

,

contradicting Var[μm+N ] ≥ 0. Thus, this contradicts the existence of such an integer
N . Therefore, for all N ∈ N, there exists m0 ≥ N such that Var[μm0 ] ≤ ε.

Choose N large enough so that for all m ≥ N , the inequality αm ≤ ε holds. This
is possible since the sequence (α2

m)m∈N and thus (αm)m∈N converges to zero in view
of
∑

m≥0 α2
m < +∞. We will show by induction that for any m ≥ m0, Var[μm] ≤ ε,

which implies the statement of the theorem.
Assume that Var[μm] ≤ ε for some m ≥ m0. Then, using this assumption,

inequality 14.16, and the fact that αm ≤ ε, the following inequality holds:

Var[μm+1] ≤ (1 − αm)ε + εαm = ε.

Thus, this proves that limm→+∞ Var[μm] = 0, that is the L2 convergence of μm to
E[X].

Note that the hypotheses of the theorem related to the sequence (αm)m∈N hold in
particular when αm = 1

m . The special case of the theorem with this choice of αm

coincides with the strong law of large numbers. This result has tight connections
with the general problem of stochastic optimization.

Stochastic optimization is the general problem of finding the solution to the
equation

x = H(x),

where x ∈ R
N , when
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H(x) cannot be computed, for example, because H is not accessible or because
the cost of its computation is prohibitive;

but an i.i.d. sample of m noisy observations H(xi) + wi are available, i ∈ [1,m],
where the noise random variable w has expectation zero: E[w] = 0.

This problem arises in a variety of different contexts and applications. As we shall
see, it is directly related to the learning problem for MDPs.

One general idea for solving this problem is to use an iterative method and define
a sequence (xt)t∈N in a way similar to what is suggested by theorem 14.5:

xt+1 = (1 − αt)xt + αt[H(xt) + wt] (14.17)

= xt + αt[H(xt) + wt − xt], (14.18)

where (αt)t∈N follow conditions similar to those assumed in theorem 14.5. More
generally, we consider sequences defined via

xt+1 = xt + αtD(xt,wt), (14.19)

where D is a function mapping R
N ×R

N to R
N . There are many different theorems

guaranteeing the convergence of this sequence under various assumptions. We will
present one of the most general forms of such theorems, which relies on the following
general result.

Theorem 14.6 Supermartingale convergence
Let (Xt)t∈N, (Yt)t∈N, and (Zt)t∈N be sequences of non-negative random variables
such that

∑∞
t=0 Yt < ∞. Let Ft denote all the information for t′ ≤ t: Ft =

{(Xt′)t′≤t, (Yt′)t′≤t, (Zt′)t′≤t}. Then, if E
[
Xt+1

∣∣Ft

]
≤ Xt + Yt − Zt, the following

holds:

Xt converges to a limit (with probability one).∑∞
t=0 Zt < ∞.

The following is one of the most general forms of such theorems.

Theorem 14.7

Let D be a function mapping R
N × R

N to R
N , (xt)t∈N and (wt)t∈N two sequences

in R
N , and (αt)t∈N a sequence of real numbers with xt+1 = xt + αtD(xt,wt). Let

Ft denote the entire history for t′ ≤ t, that is: Ft = {(xt′)t′≤t, (wt′)t′≤t, (αt′)t′≤t}.
Let Ψ denote x → 1

2‖x − x∗‖2
2 for some x∗ ∈ R

N and assume that D and (α)t∈N

verify the following conditions:

∃K1,K2 ∈ R : E
[
‖D(xt,wt)‖2

2

∣∣Ft

]
≤ K1 + K2 Ψ(xt);

∃c ≥ 0: ∇Ψ(xt)� E
[
D(xt,wt)

∣∣Ft

]
≤ −c Ψ(xt);
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αt > 0,
∑∞

t=0 αt = ∞,
∑∞

t=0 α2
t < ∞.

Then, the sequence xt converges almost surely to x∗:

xt
a.s−−→ x∗. (14.20)

Proof Since function Ψ is quadratic, a Taylor expansion gives

Ψ(xt+1) = Ψ(xt) + ∇Ψ(xt)�(xt+1 − xt) +
1
2
(xt+1 − xt)�∇2Ψ(xt)(xt+1 − xt).

Thus,

E
[
Ψ(xt+1)

∣∣Ft

]
= Ψ(xt) + αt∇Ψ(xt)� E

[
D(xt,wt)

∣∣Ft

]
+

α2
t

2
E
[
‖D(xt,wt)‖2

∣∣Ft

]
≤ Ψ(xt) − αtcΨ(xt) +

α2
t

2
(K1 + K2Ψ(xt))

= Ψ(xt) +
α2

t K1

2
−
(
αtc − α2

t K2

2

)
Ψ(xt).

Since by assumption the series
∑∞

t=0 α2
t is convergent, (α2

t )t and thus (αt)t converges
to zero. Therefore, for t sufficiently large, the term

(
αtc − α2

t K2
2

)
Ψ(xt) has the

sign of αtcΨ(xt) and is non-negative, since αt > 0, Ψ(xt) ≥ 0, and c > 0.
Thus, by the supermartingale convergence theorem 14.6, Ψ(xt) converges and∑∞

t=0

(
αtc − α2

t K2
2

)
Ψ(xt) < ∞. Since Ψ(xt) converges and

∑∞
t=0 α2

t < ∞, we have∑∞
t=0

α2
t K2
2 Ψ(xt) < ∞. But, since

∑∞
t=0 αt = ∞, if the limit of Ψ(xt) were non-zero,

we would have
∑∞

t=0 αtcΨ(xt) = ∞. This implies that the limit of Ψ(xt) is zero,
that is limt→∞ ‖xt − x∗‖2 → 0, which implies xt

a.s−−→ x∗.

The following is another related result for which we do not present the full proof.

Theorem 14.8

Let H be a function mapping R
N to R

N , and (xt)t∈N, (wt)t∈N, and (αt)t∈N be three
sequences in R

N with

∀s ∈ [1, N ], xt+1(s) = xt(s) + αt(s)
[
H(xt)(s) − xt(s) + wt(s)

]
.

Let Ft denote the entire history for t′ ≤ t, that is: Ft = {(xt′)t′≤t, (wt′)t′≤t, (αt′)t′≤t}
and assume that the following conditions are met:

∃K1,K2 ∈ R : E
[
w2

t (s)
∣∣Ft

]
≤ K1 + K2 ‖xt‖2 for some norm ‖ · ‖;

E
[
wt

∣∣Ft

]
= 0;

∀s ∈ [1, N ],
∑∞

t=0 αt = ∞,
∑∞

t=0 α2
t < ∞; and

H is a ‖ · ‖∞-contraction with fixed point x∗.
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Then, the sequence xt converges almost surely to x∗:

xt
a.s−−→ x∗. (14.21)

The next sections present several learning algorithms for MDPs with an unknown
model.

14.5.2 TD(0) algorithm

This section presents an algorithm, TD(0) algorithm, for evaluating a policy in the
case where the environment model is unknown. The algorithm is based on Bellman’s
linear equations giving the value of a policy π (see proposition 14.1):

Vπ(s) = E[r(s, π(s)] + γ
∑
s′

Pr[s′|s, π(s)]Vπ(s′)

= E
s′

[
r(s, π(s)) + γVπ(s′)|s].

However, here the probability distribution according to which this last expectation
is defined is not known. Instead, the TD(0) algorithm consists of

sampling a new state s′; and

updating the policy values according to the following, which justifies the name of
the algorithm:

V (s) ← (1 − α)V (s) + α[r(s, π(s)) + γV (s′)]

= V (s) + α[r(s, π(s)) + γV (s′) − V (s)︸ ︷︷ ︸
temporal difference of V values

]. (14.22)

Here, the parameter α is a function of the number of visits to the state s.

The pseudocode of the algorithm is given above. The algorithm starts with an
arbitrary policy value vector V0. An initial state is returned by SelectState at
the beginning of each epoch. Within each epoch, the iteration continues until a
final state is found. Within each iteration, action π(s) is taken from the current
state s following policy π. The new state s′ reached and the reward r′ received are
observed. The policy value of state s is then updated according to the rule (14.22)
and current state set to be s′.

The convergence of the algorithm can be proven using theorem 14.8. We will give
instead the full proof of the convergence of the Q-learning algorithm, for which that
of TD(0) can be viewed as a special case.
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TD(0)()

1 V ← V0 � initialization.

2 for t ← 0 to T do

3 s ← SelectState()

4 for each step of epoch t do

5 r′ ← Reward(s, π(s))

6 s′ ← NextState(π, s)

7 V (s) ← (1 − α)V (s) + α[r′ + γV (s′)]

8 s ← s′

9 return V

14.5.3 Q-learning algorithm

This section presents an algorithm for estimating the optimal state-action value
function Q∗ in the case of an unknown model. Note that the optimal policy or policy
value can be straightforwardly derived from Q∗ via: π∗(s) = argmaxa∈A Q∗(s, a)
and V ∗(s) = maxa∈A Q∗(s, a). To simplify the presentation, we will assume a
deterministic reward function.

The Q-learning algorithm is based on the equations giving the optimal state-
action value function Q∗ (14.4):

Q∗(s, a) = E[r(s, a)] + γ
∑
s′∈S

Pr[s′ | s, a]V ∗(s′)

= E
s′

[r(s, a) + γ max
a∈A

Q∗(s, a)].

As for the policy values in the previous section, the distribution model is not known.
Thus, the Q-learning algorithm consists of the following main steps:

sampling a new state s′; and

updating the policy values according to the following:

Q(s, a) ← αQ(s, a) + (1 − α)[r(s, a) + γ max
a′∈A

Q(s′, a′)]. (14.23)

where the parameter α is a function of the number of visits to the state s.

The algorithm can be viewed as a stochastic formulation of the value iteration
algorithm presented in the previous section. The pseudocode is given above. Within
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Q-Learning(π)

1 Q ← Q0 � initialization, e.g., Q0 = 0.

2 for t ← 0 to T do

3 s ← SelectState()

4 for each step of epoch t do

5 a ← SelectAction(π, s) � policy π derived from Q, e.g., ε-greedy.

6 r′ ← Reward(s, a)

7 s′ ← NextState(s, a)

8 Q(s, a) ← Q(s, a) + α
[
r′ + γ maxa′ Q(s′, a′) − Q(s, a)

]
9 s ← s′

10 return Q

each epoch, an action is selected from the current state s using a policy π derived
from Q. The choice of the policy π is arbitrary so long as it guarantees that every
pair (s, a) is visited infinitely many times. The reward received and the state s′

observed are then used to update Q following (14.23).

Theorem 14.9

Consider a finite MDP. Assume that for all s ∈ S and a ∈ A,
∑∞

t=0 αt(s, a) = ∞,
and

∑∞
t=0 α2

t (s, a) < ∞ with αt(s, a) ∈ [0, 1]. Then, the Q-learning algorithm
converges to the optimal value Q∗ (with probability one).

Note that the conditions on αt(s, a) impose that each state-action pair is visited
infinitely many times.

Proof Let (Qt(s, a))t≥0 denote the sequence of state-action value functions at
(s, a) ∈ S ×A generated by the algorithm. By definition of the Q-learning updates,

Qt+1(st, at) = Qt(st, at) + α
[
r(st, at) + γ max

a′
Qt(st+1, a

′) − Qt(st, at)
]
.

This can be rewritten as the following for all s ∈ S and a ∈ A:

Qt+1(s, a) = Qt(s, a) + αt(s, a)
[
r(s, a) + γ E

s′∼Pr[·|s,a]

[
max

a′
Qt(s′, a′)

]
− Qt(s, a)

]
+ γαt(s, a)

[
max

a′
Qt(s′, a′) − E

s′∼Pr[·|s,a]

[
max

a′
Qt(s′, a′)

]]
, (14.24)

if we define αt(s, a) as 0 if (s, a) �= (st, at) and αt(st, at) otherwise. Now, let Qt
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denote the vector with components Qt(s, a), wt the vector whose s′th is

wt(s′) = max
a′

Qt(s′, a′) − E
s′∼Pr[·|s,a]

[
max

a′
Qt(s′, a′)

]
,

and H(Qt) the vector with components H(Qt)(x, a) defined by

H(Qt)(x, a) = r(s, a) + γ E
s′∼Pr[·|s,a]

[
max

a′
Qt(s′, a′)

]
.

Then, in view of (14.24),

∀(s, a) ∈ S ×A, Qt+1(s, a) = Qt(s, a)+αt(s, a)
[
H(Qt)(s, a)−Qt(s, a)+γwt(s)

]
.

We now show that the hypotheses of theorem 14.8 hold for Qt and wt, which will
imply the convergence of Qt to Q∗. The conditions on αt hold by assumption. By
definition of wt, E[wt

∣∣Ft] = 0. Also, for any s′ ∈ S,

|wt(s′)| ≤ max
a′

|Qt(s′, a′)| +
∣∣∣∣ E
s′∼Pr[·|s,a]

[
max

a′
Qt(s′, a′)

]∣∣∣∣
≤ 2 max

s′
|max

a′
Qt(s′, a′)| = 2‖Qt‖∞.

Thus, E
[
w2

t (s)
∣∣Ft

]
≤ 4‖Qt‖2

∞. Finally, H is a γ-contraction for ‖ · ‖∞ since for

any Q′
1,Q

′′
2 ∈ R

|S|×|A|, and (s, a) ∈ S × A, we can write

|H(Q2)(x, a) − H(Q′
1)(x, a)| =

∣∣∣∣γ E
s′∼Pr[·|s,a]

[
max

a′
Q2(s′, a′) − max

a′
Q1(s′, a′)

]∣∣∣∣
≤ γ E

s′∼Pr[·|s,a]

[∣∣∣max
a′

Q2(s′, a′) − max
a′

Q1(s′, a′)
∣∣∣]

≤ γ E
s′∼Pr[·|s,a]

max
a′

[|Q2(s′, a′) − Q1(s′, a′)|]

≤ γ max
s′

max
a′

[|Q2(s′, a′) − Q1(s′, a′)|]
= γ‖Q′′

2 − Q′
1‖∞.

Since H is a contraction, it admits a fixed point Q∗: H(Q∗) = Q∗.

The choice of the policy π according to which an action a is selected (line 5) is not
specified by the algorithm and, as already indicated, the theorem guarantees the
convergence of the algorithm for an arbitrary policy so long as it ensures that every
pair (s, a) is visited infinitely many times. In practice, several natural choices are
considered for π. One possible choice is the policy determined by the state-action
value at time t, Qt. Thus, the action selected from state s is argmaxa∈A Qt(s, a). But
this choice typically does not guarantee that all actions are taken or that all states
are visited. Instead, a standard choice in reinforcement learning is the so-called ε-
greedy policy , which consists of selecting with probability (1 − ε) the greedy action
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from state s, that is, argmaxa∈A Qt(s, a), and with probability ε a random action
from s, for some ε ∈ (0, 1). Another possible choice is the so-called Boltzmann
exploration, which, given the current state-action valueQ, epoch t ∈ [0, T ], and
current state s, consists of selecting action a with the following probability:

pt(a|s,Q) =
e

Q(s,a)
τt∑

a′∈A e
Q(s,a′)

τt

,

where τt is the temperature. τt must be defined so that τt → 0 as t → ∞, which
ensures that for large values of t, the greedy action based on Q is selected. This is
natural, since as t increases, we can expect Q to be close to the optimal function.
On the other hand, τt must be chosen so that it does not tend to 0 too fast to
ensure that all actions are visited infinitely often. It can be chosen, for instance, as
1/ log(nt(s)), where nt(s) is the number of times s has been visited up to epoch t.

Reinforcement learning algorithms include two components: a learning policy ,
which determines the action to take, and an update rule, which defines the new
estimate of the optimal value function. For an off-policy algorithm, the update
rule does not necessarily depend on the learning policy. Q-learning is an off-policy
algorithm since its update rule (line 8 of the pseudocode) is based on the max
operator and the comparison of all possible actions a′, thus it does not depend on
the policy π. In contrast, the algorithm presented in the next section, SARSA, is
an on-policy algorithm.

14.5.4 SARSA

SARSA is also an algorithm for estimating the optimal state-value function in the
case of an unknown model. The pseudocode is given in figure 14.7. The algorithm
is in fact very similar to Q-learning, except that its update rule (line 9 of the
pseudocode) is based on the action a′ selected by the learning policy. Thus, SARSA
is an on-policy algorithm, and its convergence therefore crucially depends on the
learning policy. In particular, the convergence of the algorithm requires, in addition
to all actions being selected infinitely often, that the learning policy becomes greedy
in the limit. The proof of the convergence of the algorithm is nevertheless close to
that of Q-learning.

The name of the algorithm derives from the sequence of instructions defining
successively s, a, r′, s′, and a′, and the fact that the update to the function Q

depends on the quintuple (s, a, r′, s′, a).
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SARSA(π)

1 Q ← Q0 � initialization, e.g., Q0 = 0.

2 for t ← 0 to T do

3 s ← SelectState()

4 a ← SelectAction(π(Q), s) � policy π derived from Q, e.g., ε-greedy.

5 for each step of epoch t do

6 r′ ← Reward(s, a)

7 s′ ← NextState(s, a)

8 a′ ← SelectAction(π(Q), s′) � policy π derived from Q, e.g., ε-greedy.

9 Q(s, a) ← Q(s, a) + αt(s, a)
[
r′ + γQ(s′, a′) − Q(s, a)

]
10 s ← s′

11 a ← a′

12 return Q

Figure 14.7 The SARSA algorithm.

14.5.5 TD(λ) algorithm

Both TD(0) and Q-learning algorithms are only based on immediate rewards. The
idea of TD(λ) consists instead of using multiple steps ahead. Thus, for n > 1 steps,
we would have the update

V (s) ← V (s) + α (Rn
t − V (s)),

where Rn
t is defined by

Rn
t = rt+1 + γrt+2 + . . . + γn−1rt+n + γnV (st+n).

How should n be chosen? Instead of selecting a specific n, TD(λ) is based on a
geometric distribution over all rewards Rn

t , that is, it uses Rλ
t = (1−λ)

∑∞
n=0 λnRn

t

instead of Rn
t where λ ∈ [0, 1]. Thus, the main update becomes

V (s) ← V (s) + α (Rλ
t − V (s)).

The pseudocode of the algorithm is given above. For λ = 0, the algorithm coincides
with TD(0). λ = 1 corresponds to the total future reward.

In the previous sections, we presented learning algorithms for an agent navigating
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TD(λ)()

1 V ← V0 � initialization.

2 e ← 0

3 for t ← 0 to T do

4 s ← SelectState()

5 for each step of epoch t do

6 s′ ← NextState(π, s)

7 δ ← r(s, π(s)) + λV (s′) − V (s)

8 e(s) ← λe(s) + 1

9 for u ∈ S do

10 if u �= s then

11 e(u) ← γλe(u)

12 V (u) ← V (u) + αδe(u)

13 s ← s′

14 return V

in an unknown environment. The scenario faced in many practical applications is
more challenging; often, the information the agent receives about the environment
is uncertain or unreliable. Such problems can be modeled as partially observable
Markov decision processes (POMDPs). POMDPs are defined by augmenting the
definition of MDPs with an observation probability distribution depending on the
action taken, the state reached, and the observation. The presentation of their model
and solution techniques are beyond the scope of this material.

14.5.6 Large state space

In some cases in practice, the number of states or actions to consider for the
environment may be very large. For example, the number of states in the game
of backgammon is estimated to be over 1020. Thus, the algorithms presented in
the previous section can become computationally impractical for such applications.
More importantly, generalization becomes extremely difficult.

Suppose we wish to estimate the policy value Vπ(s) at each state s using
experience obtained using policy π. To cope with the case of large state spaces,
we can map each state of the environment to R

N via a mapping Φ : S → R
N , with
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N relatively small (N ≈ 200 has been used for backgammon) and approximate
Vπ(s) by a function fw(s) parameterized by some vector w. For example, fw could
be a linear function defined by fw(s) = w ·Φ(s) for all s ∈ S, or some more complex
non-linear function of w. The problem then consists of approximating Vπ with fw

and can be formulated as a regression problem. Note, however, that the empirical
data available is not i.i.d.

Suppose that at each time step t the agent receives the exact policy value Vπ(st).
Then, if the family of functions fw is differentiable, a gradient descent method
applied to the empirical squared loss can be used to sequentially update the weight
vector w via:

wt+1 = wt − α∇wt

1
2
[Vπ(st) − fwt

(st)]2 = wt + α[Vπ(st) − fwt
(st)]∇wt

fwt
(st).

It is worth mentioning, however, that for large action spaces, there are simple cases
where the methods used do not converge and instead cycle.

14.6 Chapter notes

Reinforcement learning is an important area of machine learning with a large body
of literature. This chapter presents only a brief introduction to this area. For a
more detailed study, the reader could consult the book of Sutton and Barto [1998],
whose mathematical content is short, or those of Puterman [1994] and Bertsekas
[1987], which discuss in more depth several aspects, as well as the more recent book
of Szepesvári [2010]. The Ph.D. theses of Singh [1993] and Littman [1996] are also
excellent sources.

Some foundational work on MDPs and the introduction of the temporal difference
(TD) methods are due to Sutton [1984]. Q-learning was introduced and analyzed
by Watkins [1989], though it can be viewed as a special instance of TD methods.
The first proof of the convergence of Q-learning was given by Watkins and Dayan
[1992].

Many of the techniques used in reinforcement learning are closely related to those
of stochastic approximation which originated with the work of Robbins and Monro
[1951], followed by a series of results including Dvoretzky [1956], Schmetterer [1960],
Kiefer and Wolfowitz [1952], and Kushner and Clark [1978]. For a recent survey of
stochastic approximation, including a discussion of powerful proof techniques based
on ODE (ordinary differential equations), see Kushner [2010] and the references
therein. The connection with stochastic approximation was emphasized by Tsitsiklis
[1994] and Jaakkola et al. [1994], who gave a related proof of the convergence of
Q-learning. For the convergence rate of Q-learning, consult Even-Dar and Mansour
[2003]. For recent results on the convergence of the policy iteration algorithm, see Ye
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[2011], which shows that the algorithm is strongly polynomial for a fixed discount
factor.

Reinforcement learning has been successfully applied to a variety of problems
including robot control, board games such as backgammon in which Tesauro’s TD-
Gammon reached the level of a strong master [Tesauro, 1995] (see also chapter
11 of Sutton and Barto [1998]), chess, elevator scheduling problems [Crites and
Barto, 1996], telecommunications, inventory management, dynamic radio channel
assignment [Singh and Bertsekas, 1997], and a number of other problems (see
chapter 1 of Puterman [1994]).



Conclusion

We described a large variety of machine learning algorithms and techniques and
discussed their theoretical foundations as well as their use and applications. While
this is not a fully comprehensive presentation, it should nevertheless offer the reader
some idea of the breadth of the field and its multiple connections with a variety of
other domains, including statistics, information theory, optimization, game theory,
and automata and formal language theory.

The fundamental concepts, algorithms, and proof techniques we presented should
supply the reader with the necessary tools for analyzing other learning algorithms,
including variants of the algorithms analyzed in this book. They are also likely to
be helpful for devising new algorithms or for studying new learning schemes. We
strongly encourage the reader to explore both and more generally to seek enhanced
solutions for all theoretical, algorithmic, and applied learning problems.

The exercises included at the end of each chapter, as well as the full solutions we
provide separately, should help the reader become more familiar with the techniques
and concepts described. Some of them could also serve as a starting point for
research work and the investigation of new questions.

Many of the algorithms we presented as well as their variants can be directly
used in applications to derive effective solutions to real-world learning problems.
Our detailed description of the algorithms and discussion should help with their
implementation or their adaptation to other learning scenarios.

Machine learning is a relatively recent field and yet probably one of the most
active ones in computer science. Given the wide accessibility of digitized data and
its many applications, we can expect it to continue to grow at a very fast pace
over the next few decades. Learning problems of different nature, some arising
due to the substantial increase of the scale of the data, which already requires
processing billions of records in some applications, others related to the introduction
of completely new learning frameworks, are likely to pose new research challenges
and require novel algorithmic solutions. In all cases, learning theory, algorithms,
and applications form an exciting area of computer science and mathematics, which
we hope this book could at least partly communicate.





Appendix A Linear Algebra Review

In this appendix, we introduce some basic notions of linear algebra relevant to the
material presented in this book. This appendix does not represent an exhaustive
tutorial, and it is assumed that the reader has some prior knowledge of the subject.

A.1 Vectors and norms

We will denote by H a vector space whose dimension may be infinite.

A.1.1 Norms

Definition A.1

A mapping Φ: H → R+ is said to define a norm on H if it verifies the following
axioms:

definiteness: ∀x ∈ H, Φ(x) = 0 ⇔ x = 0;

homogeneity: ∀x ∈ H,∀α ∈ R, Φ(αx) = |α|Φ(x);

triangle inequality: ∀x,y ∈ H, Φ(x + y) ≤ Φ(x) + Φ(y).

A norm is typically denoted by ‖ · ‖. Examples of vector norms are the absolute
value on R and the Euclidean (or L2) norm on R

N . More generally, for any p ≥ 1
the Lp norm is defined on R

N as

∀x ∈ R
N , ‖x‖p =

( N∑
j=1

|xj |p
)1/p

. (A.1)

The L1, L2, and L∞ norms are the some of the most commonly used norms, where
‖x‖∞ = maxj∈[1,N ] xj . Two norms ‖ · ‖ and ‖ · ‖′ are said to be equivalent iff there
exists α, β > 0 such that for all x ∈ H,

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖. (A.2)
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The following general inequalities relating these norms can be proven straightfor-
wardly:

‖x‖2 ≤ ‖x‖1 ≤
√

N‖x‖2 (A.3)

‖x‖∞ ≤ ‖x‖2 ≤
√

N‖x‖∞ (A.4)

‖x‖∞ ≤ ‖x‖1 ≤ N‖x‖∞. (A.5)

The second inequality of the first line can be shown using the Cauchy-Schwarz
inequality presented later while the other inequalities are clear. These inequalities
show the equivalence of these three norms. More generally, all norms on a finite-
dimensional space are equivalent. The following additional properties hold for the
L∞ norm: for all x ∈ H,

∀p ≥ 1, ‖x‖∞ ≤ ‖x‖p ≤ N1/p‖x‖∞ (A.6)

lim
p→+∞‖x‖p = ‖x‖∞. (A.7)

The inequalities of the first line are straightforward and imply the limit property of
the second line.

We will often consider a Hilbert space, that is a vector space equipped with an
inner product 〈·, ·〉 and that is complete (all Cauchy sequences are convergent). The
inner product induces a norm defined as follows:

∀x ∈ H, ‖x‖H =
√

〈x,x〉. (A.8)

A.1.2 Dual norms

Definition A.2

Let ‖ · ‖ be a norm on R
N . Then, the dual norm ‖ · ‖∗ associated to ‖ · ‖ is the norm

defined by

∀y ∈ H, ‖y‖∗ = sup
‖x‖=1

| 〈y,x〉 | . (A.9)

For any p, q ≥ 1 that are conjugate that is such that 1
p + 1

q = 1, the Lp and Lq

norms are dual norms of each other. In particular, the dual norm of L2 is the L2

norm, and the dual norm of the L1 norm is the L∞ norm.

Proposition A.1 Hölder’s inequality
Let p, q ≥ 1 be conjugate: 1

p + 1
q = 1. Then, for all x, y ∈ R

N ,

| 〈x,y〉 | ≤ ‖x‖p‖y‖q, (A.10)

with equality when |yi| = |xi|p−1 for all i ∈ [1, N ].
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Proof The statement holds trivially for x = 0 or y = 0; thus, we can assume
x �= 0 and y �= 0. Let a, b > 0. By the concavity of log (see definition B.5), we can
write

log
(

1
p
ap +

1
q
bq

)
≥ 1

p
log(ap) +

1
q

log(bq) = log(a) + log(b) = log(ab).

Taking the exponential of the left- and right-hand sides gives

1
p
ap +

1
q
bq ≥ ab,

which is known as Young’s inequality . Using this inequality with a = |xj |/‖x‖p and
b = |yj |/‖y‖q for j ∈ [1, N ] and summing up gives∑N

j=1 |xjyj |
‖x‖p‖y‖q

≤ 1
p

‖x‖p

‖x‖p
+

1
q

‖y‖q

‖y‖q
=

1
p

+
1
q

= 1.

Since | 〈x,y〉 | ≤∑N
j=1 |xjyj |, the inequality claim follows. The equality case can be

verified straightforwardly.

Taking p = q = 2 immediately yields the following result known as the Cauchy-
Schwarz inequality .

Corollary A.1 Cauchy-Schwarz inequality
For all x,y ∈ R

N ,

| 〈x,y〉 | ≤ ‖x‖2‖y‖2, (A.11)

with equality iff x and y are collinear.

Let H be the hyperplane in R
N whose equation is given by

w · x + b = 0,

for some normal vector w ∈ R
N and offset b ∈ R. Let dp(x,H) denote the distance

of x to the hyperplane H, that is,

dp(x,H) = inf
x′∈H

‖x′ − x‖p. (A.12)

Then, the following identity holds for all p ≥ 1:

dp(x,H) =
|w · x + b|

‖w‖q
, (A.13)

where q is the conjugate of p: 1
p + 1

q = 1. (A.13) can be shown by a straightforward
application of the results of appendix B to the constrained optimization problem
(A.12).
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A.2 Matrices

For a matrix M ∈ R
m×n with m rows and n columns, we denote by Mij its ijth

entry, for all i ∈ [1,m] and j ∈ [1, n]. For any m ≥ 1, we denote by Im the m-
dimensional identity matrix, and refer to it as I when the dimension is clear from
the context.

The transpose of M is denoted by M� and defined by (M�)ij = Mji for all (i, j).
For any two matrices M ∈ R

m×n and N ∈ R
n×p, (MN)� = N�M�. M is said to

be symmetric iff Mij = Mji for all (i, j), that is, iff M = M�.
The trace of a square matrix M is denoted by Tr[M] and defined as Tr[M] =∑N
i=1 Mii. For any two matrices M ∈ R

m×n and N ∈ R
n×m, the following identity

holds: Tr[MN] = Tr[NM]. More generally, the following cyclic property holds with
the appropriate dimensions for the matrices M, N, and P:

Tr[MNP] = Tr[PMN] = Tr[NPM]. (A.14)

The inverse of a square matrix M, which exists when M has full rank, is denoted
by M−1 and is the unique matrix satisfying MM−1 = M−1M = I.

A.2.1 Matrix norms

A matrix norm is a norm defined over R
m×n where m and n are the dimensions

of the matrices considered. Many matrix norms, including those discussed below,
satisfy the following submultiplicative property :

‖MN‖ ≤ ‖M‖‖N‖. (A.15)

The matrix norm induced by the vector norm ‖ · ‖p or the operator norm induced
by that norm is also denoted by ‖ · ‖p and defined by

‖M‖p = sup
‖x‖p≤1

‖Mx‖p . (A.16)

The norm induced for p = 2 is known as the spectral norm, which equals the largest
singular value of M (see section A.2.2), or the square-root of the largest eigenvalue
of M�M:

‖M‖2 = σ1(M) =
√

λmax(M�M). (A.17)
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Not all matrix norms are induced by vector norms. The Frobenius norm denoted
by ‖ · ‖F is the most notable of such norms and is defined by:

‖M‖F =
( m∑

i=1

n∑
j=1

M2
ij

)1/2

.

The Frobenius norm can be interpreted as the L2 norm of a vector when treating
M as a vector of size mn. It also coincides with the norm induced by the Frobenius
product , which is the inner product defined over for all M,N ∈ R

m×n by

〈M,N〉F = Tr[M�N]. (A.18)

This relates the Frobenius norm to the singular values of M:

‖M‖2
F = Tr[M�M] =

r∑
i=1

σi(M)2 ,

where r = rank(M). The second equality follows from properties of SPSD matrices
(see section A.2.3).

For any j ∈ [1, n], let Mj denote the jth column of M, that is M = [M1 · · ·Mn].
Then, for any p, r ≥ 1, the Lp,r group norm of M is defined by

‖M‖p,r =
( n∑

j=1

‖Mi‖r
p

)1/r

.

One of the most commonly used group norms is the L2,1 norm defined by

‖M‖2,1 =
n∑

i=1

‖Mi‖2 .

A.2.2 Singular value decomposition

The compact singular value decomposition (SVD) of M, with r = rank(M) ≤
min(m,n), can be written as follows:

M = UMΣMV�
M .

The r × r matrix ΣM = diag(σ1, . . . , σr) is diagonal and contains the non-zero
singular values of M sorted in decreasing order, that is σ1 ≥ . . . ≥ σr > 0.
UM ∈ R

m×r and VM ∈ R
n×r have orthonormal columns that contain the left and

right singular vectors of M corresponding to the sorted singular values. Uk ∈ R
m×k

are the top k ≤ r left singular vectors of M.
The orthogonal projection onto the span of Uk can be written as PUk

= UkU�
k ,

where PUk
is SPSD and idempotent, i.e., P2

Uk
= PUk

. Moreover, the orthogonal pro-
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jection onto the subspace orthogonal to Uk is defined as PUk,⊥. Similar definitions,
i.e., Vk,PVk

,PVk,⊥, hold for the right singular vectors.
The generalized inverse, or Moore-Penrose pseudo-inverse of a matrix M is

denoted by M† and defined by

M† = UMΣ†
MV�

M , (A.19)

where Σ†
M = diag(σ−1

1 , . . . , σ−1
r ). For any square m × m matrix M with full rank,

i.e., r = m, the pseudo-inverse coincides with the matrix inverse: M† = M−1.

A.2.3 Symmetric positive semidefinite (SPSD) matrices

Definition A.3

A symmetric matrix M ∈ R
m×m is said to be positive semidefinite iff

x�Mx ≥ 0 (A.20)

for all x ∈ R
m. M is said to be positive definite if the inequality is strict.

Kernel matrices (see chapter 5) and orthogonal projection matrices are two examples
of SPSD matrices. It is straightforward to show that a matrix M is SPSD iff its
eigenvalues are all non-negative. Furthermore, the following properties hold for any
SPSD matrix M:

M admits a decomposition M = X�X for some matrix X and the Cholesky
decomposition provides one such decomposition in which X is an upper triangular
matrix.

The left and right singular vectors of M are the same and the SVD of M is also
its eigenvalue decomposition.

The SVD of an arbitrary matrix X = UXΣXV�
X defines the SVD of two related

SPSD matrices: the left singular vectors (UX) are the left singular vectors of XX�,
the right singular vectors (VX) are the right singular vectors of X�X and the non-
zero singular values of X are the square roots of the non-zero singular values of
XX� and X�X.

The trace of M is the sum of its singular values, i.e., Tr[M] =
∑r

i=1 σi(M), where
rank(M) = r.

The top singular vector of M, u1, maximizes the Rayleigh quotient , which is
defined as

r(x,M) =
x�Mx
x�x

.

In other words, u1 = argmaxx r(x,M) and r(u,M) = σ1(M). Similarly, if M′ =
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PUi,⊥M, that is, the projection of M onto the subspace orthogonal to Ui, then
ui+1 = argmaxx r(x,M′), where ui+1 is the (i + 1)st singular vector of M.





Appendix B Convex Optimization

In this appendix, we introduce the main definitions and results of convex optimiza-
tion needed for the analysis of the learning algorithms presented in this book.

B.1 Differentiation and unconstrained optimization

We start with some basic definitions for differentiation needed to present Fermat’s
theorem and to describe some properties of convex functions.

Definition B.1 Gradient
Let f : X ⊆ R

N → R be a differentiable function. Then, the gradient of f at x ∈ X
is the vector in R

N denoted by ∇f(x) and defined by

∇f(x) =

⎡⎢⎢⎣
∂f
∂x1

(x)
...

∂f
∂xN

(x)

⎤⎥⎥⎦ .

Definition B.2 Hessian
Let f : X ⊆ R

N → R be a twice differentiable function. Then, the Hessian of f at
x ∈ X is the matrix in R

N×N denoted by ∇2f(x) and defined by

∇2f(x) =
[ ∂2f

∂xi,xj
(x)
]
1≤i,j≤N

.

Next, we present a classic result for unconstrained optimization.

Theorem B.1 Fermat’s theorem
Let f : X ⊆ R

N → R be a differentiable function. If f admits a local extremum at
x∗ ∈ X , then ∇f(x∗) = 0, that is, x∗ is a stationary point.
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Figure B.1 Examples of a convex (left) and a concave (right) functions. Note that
any line segment drawn between two points on the convex function lies entirely
above the graph of the function while any line segment drawn between two points
on the concave function lies entirely below the graph of the function.

B.2 Convexity

This section introduces the notions of convex sets and convex functions. Convex
functions play an important role in the design and analysis of learning algorithms,
in part because a local minimum of a convex function is necessarily also a global
minimum. Thus, the properties of a learning hypothesis that is a local minimum
of a convex optimization are often well understood, while for some non-convex
optimization problems, there may be a very large number of local minima for which
no clear characterization can be given.

Definition B.3 Convex set
A set X ⊆ R

N is said to be convex if for any two points x,y ∈ X the segment [x,y]
lies in X , that is

{αx + (1 − α)y : 0 ≤ α ≤ 1} ⊆ X .

Definition B.4 Convex hull
The convex hull conv(X ) of a set of points X ⊆ R

N is the minimal convex set
containing X and can be equivalently defined as follows:

conv(X ) =
{ m∑

i=1

αixi : m ≥ 1,∀i ∈ [1,m],xi ∈ X , αi ≥ 0,

m∑
i=1

αi = 1
}

. (B.1)

Let Epi f denote the epigraph of function f : X → R, that is the set of points lying
above its graph: {(x, y) : x ∈ X , y ≥ f(x)}.
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f(y)
(x, f(x))

f(x) + ∇f(x)·(y − x)

Figure B.2 Illustration of the first-order property satisfied by all convex functions.

Definition B.5 Convex function
Let X be a convex set. A function f : X → R is said to be convex iff Epi f is a
convex set, or, equivalently, if for all x,y ∈ X and α ∈ [0, 1],

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) . (B.2)

f is said to be strictly convex if inequality (B.2) is strict for all x,y ∈ X where
x �= y and α ∈ (0, 1). f is said to be (strictly) concave when −f is (strictly)
convex. Figure B.1 shows simple examples of a convex and concave functions.
Convex functions can also be characterized in terms of their first- or second-order
differential.

Theorem B.2

Let f be a differentiable function, then f is convex if and only if dom(f) is convex
and the following inequalities hold:

∀x,y ∈ dom(f), f(y) − f(x) ≥ ∇f(x) · (y − x) . (B.3)

The property (B.3) is illustrated by figure B.2: for a convex function, the hyperplane
tangent at x is always below the graph.

Theorem B.3

Let f be a twice differentiable function, then f is convex iff dom(f) is convex and
its Hessian is positive semidefinite:

∀x ∈ dom(f), ∇2f(x) , 0 .

Recall that a symmetric matrix is positive semidefinite if all of its eigenvalues are
non-negative. Further, note that when f is scalar, this theorem states that f is
convex if and only if its second derivative is always non-negative, that is, for all
x ∈ dom(f), f ′′(x) ≥ 0.

Example B.1 Linear functions
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Any linear function f is both convex and concave, since equation (B.2) holds with
equality for both f and −f by the definition of linearity.

Example B.2 Quadratic function

The function f : x �→ x2 defined over R is convex since it is twice differentiable and
for all x ∈ R, f ′′(x) = 2 > 0.

Example B.3 Norms

Any norm ‖ ·‖ defined over a convex set X is convex since by the triangle inequality
and homogeneity property of the norm, for all α ∈ [0, 1],x,y ∈ X , we can write

‖αx + (1 − α)y‖ ≤ ‖αx‖ + ‖(1 − α)y‖ = α‖x‖ + (1 − α)‖y‖ .

Example B.4 Maximum function

The max function defined for all x ∈ R
N , by x �→ maxj∈[1,N ] xj is convex. For all

α ∈ [0, 1],x,y ∈ R
N , by the subadditivity of max, we can write

max
j

(αxj +(1−α)yj) ≤ max
j

(αxj)+max
j

((1−α)yj) = α max
j

(xj)+(1−α) max
j

(yj) .

One useful approach for proving convexity or concavity of functions is to make
use of composition rules. For simplicity of presentation, we will assume twice
differentiability, although the results can also be proven without this assumption.

Lemma B.1 Composition of convex/concave functions
Assume h : R → R and g : R

N → R are twice differentiable functions and for all
x ∈ R

N , define f(x) = h(g(x)). Then the following implications are valid:

h is convex and non-decreasing, and g is convex =⇒ f is convex.

h is convex and non-increasing, and g is concave =⇒ f is convex.

h is concave and non-decreasing, and g is concave =⇒ f is concave.

h is concave and non-increasing, and g is convex =⇒ f is concave.

Proof We restrict ourselves to n = 1, since it suffices to prove convexity (concav-
ity) along all arbitrary lines that intersect the domain. Now, consider the second
derivative of f :

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x) . (B.4)

Note that if h is convex and non-decreasing, we have h′′ ≥ 0 and h′ ≥ 0.
Furthermore, if g is convex we also have g′′ ≥ 0, and it follows that f ′′(x) ≥ 0,
which proves the first statement. The remainder of the statements are proven in a
similar manner.

Example B.5 Composition of functions
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The previous lemma can be used to immediately prove the convexity or concavity
of the following composed functions:

If f : R
N → R is convex, then exp(f) is convex.

Any squared norm ‖ · ‖2 is convex.

For all x ∈ R
N the function x �→ log(

∑N
j=1 xj) is concave.

The following is a useful inequality applied in a variety of contexts. It is in fact a
quasi-direct consequence of the definition of convexity.

Theorem B.4 Jensen’s inequality
Let X be a random variable taking values in a non-empty convex set C ⊆ R

N with a
finite expectation E[X], and f a measurable convex function defined over C. Then,
E[X] is in C, E[f(X)] is finite, and the following inequality holds:

f(E[X]) ≤ E[f(X)].

Proof We give a sketch of the proof, which essentially follows from the definition
of convexity. Note that for any finite set of elements x1, . . . , xn in C and any positive
reals α1, . . . , αn such that

∑n
i=1 αi = 1, we have

f
( n∑

i=1

αixi

)
≤

n∑
i=1

αif(xi) .

This follows straightforwardly by induction from the definition of convexity. Since
the αis can be interpreted as probabilities, this immediately proves the inequality
for any distribution with a finite support defined by α = (α1, . . . , αn):

f(E
α
[X]) ≤ E

α
[f(X)] .

Extending this to arbitrary distributions can be shown via the continuity of f on
any open set, which is guaranteed by the convexity of f , and the weak density of
distributions with finite support in the family of all probability measures.

B.3 Constrained optimization

We now define a general constrained optimization problem and the specific proper-
ties associated to convex constrained optimization problems.
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Definition B.6 Constrained optimization problem
Let X ⊆ R

N and f, gi : X → R, for all i ∈ [1,m]. Then, a constrained optimization
problem has the form:

min
x∈X

f(x)

subject to: gi(x) ≤ 0, ∀i ∈ {1, . . . ,m}.

This general formulation does not make any convexity assumptions and can be
augmented with equality constraints. It is referred to as the primal problem in
contrast with a related problem introduced later. We will denote by p∗ the optimal
value of the objective.

For any x ∈ X , we will denote by g(x) the vector (g1(x), . . . , gm(x))�. Thus, the
constraints can be written as g(x) ≤ 0. To any constrained optimization problem,
we can associate a Lagrange function that plays an important in the analysis of the
problem and its relationship with another related optimization problem.

Definition B.7 Lagrangian
The Lagrange function or the Lagrangian associated to the general constrained
optimization problem defined in (B.6) is the function defined over X × R+ by:

∀x ∈ X ,∀α ≥ 0, L(x,α) = f(x) +
m∑

i=1

αigi(x) ,

where the variables αi are known as the Lagrange or dual variables with α =
(α1, . . . , αm)�.

Any equality constraint of the form g(x) = 0 for a function g can be equivalently
expressed by two inequalities: −g(x) ≤ 0 and +g(x) ≤ 0. Let α− ≥ 0 be the
Lagrange variable associated to the first constraint and α+ ≥ 0 the one associated
to the second constraint. The sum of the terms corresponding to these constraints
in the definition of the Lagrange function can therefore be written as αg(x) with
α = (α+−α−). Thus, in general, for an equality constraint g(x) = 0 the Lagrangian
is augmented with a term αg(x) but with α ∈ R not constrained to be non-negative.
Note that in the case of a convex optimization problem , equality constraints g(x)
are required to be affine since both g(x) and −g(x) are required to be convex.

Definition B.8 Dual function
The (Lagrange) dual function associated to the constrained optimization problem is
defined by

∀α ≥ 0, F (α) = inf
x∈X

L(x,α) = inf
x∈X

(
f(x) +

m∑
i=1

αigi(x)
)
. (B.5)
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Note that F is always concave, since the Lagrangian is linear with respect to α and
since the infimum preserves concavity. We further observe that

∀α ≥ 0, F (α) ≤ p∗ , (B.6)

since for any feasible x, f(x) +
∑m

i=1 αigi(x) ≤ f(x). The dual function naturally
leads to the following optimization problem.

Definition B.9 Dual problem
The dual (optimization) problem associated to the constrained optimization problem
is

max
α

F (α)

subject to: α ≥ 0 .

The dual problem is always a convex optimization problem (as a maximization of a
concave problem). Let d∗ denote optimal value. By (B.6), the following inequality
always holds:

d∗ ≤ p∗ (weak duality).

The difference (p∗ − d∗) is known as the duality gap. The equality case

d∗ = p∗ (strong duality)

does not hold in general. However, strong duality does hold when convex problems
satisfy a constraint qualification. We will denote by int(X ) the interior of the set
X .

Definition B.10 Strong constraint qualification
Assume that int(X ) �= ∅. Then, the strong constraint qualification or Slater’s
condition is defined as

∃x ∈ int(X ) : g(x) < 0. (B.7)

A function h : X → R is said to be affine if it can be defined for all x ∈ X by
h(x) = w · x + b, for some w ∈ R

N and b ∈ R.

Definition B.11 Weak constraint qualification
Assume that int(X ) �= ∅. Then, the weak constraint qualification or weak Slater’s
condition is defined as

∃x ∈ int(X ) : ∀i ∈ [1,m],
(
gi(x) < 0

) ∨ (gi(x) = 0 ∧ gi affine
)
. (B.8)
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We next present sufficient and necessary conditions for solutions to constrained
optimization problems, based on the saddle point of the Lagrangian and Slater’s
condition.

Theorem B.5 Saddle point — sufficient condition
Let P be a constrained optimization problem over X = R

N . If (x∗,α∗) is a saddle
point of the associated Lagrangian, that is,

∀x ∈ R
N ,∀α ≥ 0, L(x∗,α) ≤ L(x∗,α∗) ≤ L(x,α∗), (B.9)

then (x∗, α∗) is a solution of the problem P .

Proof By the first inequality, the following holds:

∀α ≥ 0,L(x∗,α) ≤ L(x∗,α∗) ⇒ ∀α ≥ 0,α · g(x∗) ≤ α∗ · g(x∗)

⇒ g(x∗) ≤ 0 ∧ α∗ · g(x∗) = 0 , (B.10)

where g(x∗) ≤ 0 in (B.10) follows by letting α → +∞ and α∗ · g(x∗) = 0 follows
by letting α → 0. In view of (B.10), the second inequality in (B.9) gives,

∀x,L(x∗,α∗) ≤ L(x,α∗) ⇒ ∀x, f(x∗) ≤ f(x) + α∗ · g(x).

Thus, for all x satisfying the constraints, that is g(x) ≤ 0, we have

f(x∗) ≤ f(x),

which completes the proof.

Theorem B.6 Saddle point — necessary condition
Assume that f and gi, i ∈ [1,m], are convex functions and that Slater’s condition
holds. Then, if x is a solution of the constrained optimization problem, then there
exists α ≥ 0 such that (x,α) is a saddle point of the Lagrangian.

Theorem B.7 Saddle point — necessary condition
Assume that f and gi, i ∈ [1,m], are convex differentiable functions and that the
weak Slater’s condition holds. If x is a solution of the constrained optimization
problem, then there exists α ≥ 0 such that (x,α) is a saddle point of the Lagrangian.

We conclude with a theorem providing necessary and sufficient optimality con-
ditions when the problem is convex, the objective function differentiable, and the
constraints qualified.

Theorem B.8 Karush-Kuhn-Tucker’s theorem
Assume that f, gi : X → R,∀i ∈ {1, . . . ,m} are convex and differentiable and that
the constraints are qualified. Then x is a solution of the constrained program if and
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if only there exists α ≥ 0 such that,

∇xL(x,α) = ∇xf(x) + α · ∇xg(x) = 0 (B.11)

∇αL(x,α) = g(x) ≤ 0 (B.12)

α · g(x) =
m∑

i=1

αig(xi) = 0 . (B.13)

The conditions B.11–B.13 are known as the KKT conditions. Note that the last two
KKT conditions are equivalent to

g(x) ≤ 0 ∧ (∀i ∈ {1, . . . ,m}, ᾱigi(x) = 0). (B.14)

These equalities are known as complementarity conditions.

Proof For the forward direction, since the constraints are qualified, if x is a
solution, then there exists α such that the (x,α) is a saddle point of the Lagrangian
and all three conditions are satisfied (the first condition follows by definition of a
saddle point, and the second two conditions follow from (B.10)).

In the opposite direction, if the conditions are met, then for any x such that
g(x) ≤ 0, we can write

f(x) − f(x) ≥ ∇xf(x) · (x − x) (convexity of f)

≥ −
m∑

i=1

αi∇xgi(x) · (x − x) (first condition)

≥ −
m∑

i=1

αi[gi(x) − gi(x)] (convexity of gis)

≥ −
m∑

i=1

αigi(x) ≥ 0, (third and second condition)

which shows that f(x) is the minimum of f over the set of points satisfying the
constraints.

B.4 Chapter notes

The results presented in this appendix are based on three main theorems: theo-
rem B.1 due to Fermat (1629); theorem B.5 due to Lagrange (1797), and theo-
rem B.8 due to Karush [1939] and Kuhn and Tucker [1951].

For a more extensive material on convex optimization, we strongly recommend
the book of Boyd and Vandenberghe [2004].





Appendix C Probability Review

In this appendix, we give a brief review of some basic notions of probability and
will also define the notation that is used throughout the textbook.

C.1 Probability

A probability space is a model based on three components: a sample space, an events
set , and a probability distribution:

sample space Ω: Ω is the set of all elementary events or outcomes possible in a
trial, for example, each of the six outcomes in {1, . . . , 6} when casting a die.

events set F : F is a σ-algebra, that is a set of subsets of Ω containing Ω that
is closed under complementation and countable union (therefore also countable
intersection). An example of an event may be “the die lands on an odd number”.

probability distribution: Pr is a mapping from the set of all events F to [0, 1] such
that Pr[Ω] = 1 and, for all mutually exclusive events A1, . . . , An,

Pr[A1 ∪ . . . ∪ An] =
n∑

i=1

Pr[Ai].

The discrete probability distribution associated with a fair die can be defined by
Pr[Ai] = 1/6 for i ∈ {1 . . . 6}, where Ai is the event that the die lands on value i.

C.2 Random variables

Definition C.1 Random variables
A random variable X is a function X : Ω → R that is measurable, that is such that
for any interval I, the subset of the sample space {ω ∈ Ω: X(ω) ∈ I} is an event.

The probability mass function of a discrete random variable X is defined as the
function x �→ Pr[X = x]. The joint probability mass function of discrete random
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Figure C.1 Approximation of the binomial distribution (in red) by a normal
distribution (in blue).

variables X and Y is defined as the function (x, y) �→ Pr[X = x ∧ Y = y].
A probability distribution is said to be absolutely continuous when it admits a

probability density function, that is a function f associated to a real-valued random
variable X that satisfies for all a, b ∈ R

Pr[a ≤ X ≤ b] =
∫ b

a

f(x)dx . (C.1)

Definition C.2 Binomial distribution
A random variable X is said to follow a binomial distribution B(n, p) with n ∈ N

and p ∈ [0, 1] if for any k ∈ {0, 1, . . . , n},

Pr[X = k] =
(

n

k

)
pk(1 − p)n−k .

Definition C.3 Normal distribution
A random variable X is said to follow a normal (or Gaussian) distribution N(μ, σ2)
with μ ∈ R and σ > 0 if its probability density function is given by,

f(x) =
1√

2πσ2
exp

(
− (x − μ)2

2σ2

)
.

The standard normal distribution N(0, 1) is the normal distribution with zero mean
and unit variance.

The normal distribution is often used to approximate a binomial distribution.
Figure C.1 illustrates that approximation.

Definition C.4 Laplace distribution
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A random variable X is said to follow a Laplace distribution with location parameter
μ ∈ R and scale parameter b > 0 if its probability density function is given by,

f(x) =
1
2b

exp
(
− |x − μ|

b

)
.

Definition C.5 Poisson distribution
A random variable X is said to follow a Poisson distribution with λ > 0 if for any
k ∈ N,

Pr[X = k] =
λke−λ

k!
.

The definition of the following family of distributions uses the notion of indepen-
dence of random variables defined in the next section.

Definition C.6 χ2-squared distribution
The χ2-distribution (or chi-squared distribution) with k degrees of freedom is the
distribution of the sum of the squares of k independent random variables, each
following a standard normal distribution.

C.3 Conditional probability and independence

Definition C.7 Conditional probability
The conditional probability of event A given event B is defined by

Pr[A | B] =
Pr[A ∩ B]

Pr[B]
, (C.2)

when Pr[B] �= 0.

Definition C.8 Independence
Two events A and B are said to be independent if

Pr[A ∩ B] = Pr[A] Pr[B]. (C.3)

Equivalently, A and B are independent iff Pr[A | B] = Pr[A] when Pr[B] �= 0.

A sequence of random variables is said to be independently and identically distributed
(i.i.d.) when the random variables are mutually independent and follow the same
distribution.

The following are basic probability formulae related to the notion of conditional
probability. They hold for any events A, B, and A1, . . . , An, with the additional
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constraint Pr[B] �= 0 needed for the Bayes formula to be well defined:

Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B] (sum rule) (C.4)

Pr[
n⋃

i=1

Ai] ≤
n∑

i=1

Pr[Ai] (union bound) (C.5)

Pr[A | B] =
Pr[B | A] Pr[A]

Pr[B]
(Bayes formula) (C.6)

Pr[
n⋂

i=1

Ai] = Pr[A1] Pr[A2 | A1] · · ·Pr[An |
n−1⋂
i=1

Ai] (chain rule). (C.7)

The sum rule follows immediately from the decomposition of A∪B as the union of
the disjoint sets A and (B −A∩B). The union bound is a direct consequence of the
sum rule. The Bayes formula follows immediately from the definition of conditional
probability and the observation that: Pr[A|B] Pr[B] = Pr[B|A] Pr[A] = Pr[A ∩ B].
Similarly, the chain rule follows the observation that Pr[A1] Pr[A2|A1] = Pr[A1∩A2];
using the same argument shows recursively that the product of the first k terms of
the right-hand side equals Pr[

⋂k
i=1 Ai].

Finally, assume that Ω = A1 ∪ A2 ∪ . . . ∪ An with Ai ∩ Aj = ∅ for i �= j, i.e., the
Ais are mutually disjoint. Then, the following formula is valid for any event B:

Pr[B] =
n∑

i=1

Pr[B | Ai] Pr[Ai] (theorem of total probability). (C.8)

This follows the observation that Pr[B | Ai] Pr[Ai] = Pr[B ∩Ai] by definition of the
conditional probability and the fact that the events B ∩ Ai are mutually disjoint.

Example C.1 Application of the Bayes formula

Let H be a set of hypotheses. The maximum a posteriori (MAP) principle consists
of selecting the hypothesis ĥ ∈ H that is the most probable given the observation
O. Thus, by the Bayes formula, it is given by

ĥ = argmax
h∈H

Pr[h|O] = argmax
h∈H

Pr[O|h] Pr[h]
Pr[O]

= argmax
h∈H

Pr[O|h] Pr[h]. (C.9)

Now, suppose we need to determine if a patient has a rare disease, given a laboratory
test of that patient. The hypothesis set is reduced to the two outcomes: d (disease)
and nd (no disease), thus H = {d, nd}. The laboratory test is either pos (positive)
or neg (negative), thus O = {pos, neg}.

Suppose that the disease is rare, say Pr[d] = .005 and that the laboratory is
relatively accurate: Pr[pos|d] = .98, and Pr[neg|nd] = .95. Then, if the test is
positive, what should be the diagnosis? We can compute the right-hand side of



C.4 Expectation, Markov’s inequality , and Moment-Generating function 363

(C.9) for both hypotheses to determine ĥ:

Pr[pos|d] Pr[d] = .98 × .005 = .0049

Pr[pos|nd] Pr[nd] = (1 − .95) × .(1 − .005) = .04975 > .0049.

Thus, in this case, the MAP prediction is ĥ = nd: with the values indicated, a
patient with a positive test result is nonetheless more likely not to have the disease!

C.4 Expectation, Markov’s inequality, and oment- enerating
function

Definition C.9 Expectation
The expectation or mean of a random variable X is denoted by E[X] and defined
by

E[X] =
∑

x

xPr[X = x]. (C.10)

When X follows a probability distribution D, we will also write Ex∼D[x] instead of
E[X] to explicitly indicate the distribution. A fundamental property of expectation,
which is straightforward to verify using its definition, is that it is linear, that is, for
any two random variables X and Y and any a, b ∈ R, the following holds:

E[aX + bY ] = a E[X] + b E[Y ]. (C.11)

Furthermore, when X and Y are independent random variables, then the following
identity holds:

E[XY ] = E[X] E[Y ]. (C.12)

Indeed, by definition of expectation and of independence, we can write

E[XY ] =
∑
x,y

xy Pr[X = x ∧ Y = y] =
∑
x,y

xy Pr[X = x] Pr[Y = y]

=
(∑

x

xPr[X = x]
)(∑

y

y Pr[Y = y]
)
,

where in the last step we used Fubini’s theorem . The following provides a simple
bound for a non-negative random variable in terms of its expectation, known as
Markov’s inequality .

m g
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Theorem C.1 Markov’s inequality
Let X be a non-negative random variable with E[X] < ∞. Then for all t > 0,

Pr
[
X ≥ t E[X]

] ≤ 1
t
. (C.13)

Proof The proof steps are as follows:

Pr[X ≥ t E[X]] =
∑

x≥t E[X]

Pr[X = x] (by definition)

≤
∑

x≥t E[X]

Pr[X = x]
x

t E[X]

(
using

x

t E[X]
≥ 1

)
≤
∑

x

Pr[X = x]
x

t E[X]
(extending non-negative sum)

= E
[

X

t E[X]

]
=

1
t

(linearity of expectation).

This concludes the proof.

The following function based on the notion of expectation is often useful in the
analysis of the properties of a distribution.

Definition C.10 Moment-generating function
The moment-generating function of a random variable X is the function t �→ E[etX ]
defined over the set of t ∈ R for which the expectation is finite.

We will present in the next chapter a general bound on the moment-generating
function of a zero-mean bounded random variable (Lemma D.1). Here, we illustrate
its computation in the case of a χ2-distribution.

Example C.2 Moment-generating function of χ2-distribution

Let X be a random variable following a χ2-squared distribution with k degrees of
freedom. We can write X =

∑k
i=1 X2

i where the Xis are independent and follow a
standard normal distribution.

Let t < 1/2. By the i.i.d. assumption about the variables Xi, we can write

E[etX ] = E
[ k∏

i=1

etX2
i

]
=

k∏
i=1

E
[
etX2

i
]

= E
[
etX2

1
]k

.

By definition of the standard normal distribution, we have

E[etX2
1 ] =

1√
2π

∫ +∞

−∞
etx2

e
−x2

2 dx =
1√
2π

∫ +∞

−∞
e(1−2t)−x2

2 dx

=
1√
2π

∫ +∞

−∞

e
−u2

2√
1 − 2t

du = (1 − 2t)
1
2 ,
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where we used the change of variable u =
√

1 − 2t x. In view of that, the moment-
generating function of the χ2-distribution is given by

∀t < 1/2, E[etX ] = (1 − 2t)
k
2 . (C.14)

C.5 Variance and Chebyshev’s inequality

Definition C.11 Variance — Standard deviation
The variance of a random variable X is denoted by Var[X] and defined by

Var[X] = E[(X − E[X])2]. (C.15)

The standard deviation of a random variable X is denoted by σX and defined by

σX =
√

Var[X]. (C.16)

For any random variable X and any a ∈ R, the following basic properties hold for
the variance, which can be proven straightforwardly:

Var[X] = E[X2] − E[X]2 (C.17)

Var[aX] = a2 Var[X]. (C.18)

Furthermore, when X and Y are independent , then

Var[X + Y ] = Var[X] + Var[Y ]. (C.19)

Indeed, using the linearity of expectation and the identity E[X] E[Y ] − E[XY ] = 0
which holds by the independence of X and Y , we can write

Var[X + Y ] = E[(X + Y )2] − E[X + Y ]2

= E[X2 + Y 2 + 2XY ] − (E[X]2 + E[Y ]2 + 2 E[XY ])

= (E[X2] − E[X]2) + (E[Y 2] − E[Y ]2) + 2(E[X] E[Y ] − E[XY ])

= Var[X] + Var[Y ].

The following inequality known as Chebyshev’s inequality bounds the deviation
of a random variable from its expectation in terms of its standard deviation.
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Theorem C.2 Chebyshev’s inequality
Let X be a random variable with Var[X] < +∞. Then, for all t > 0, the following
inequality holds:

Pr
[|X − E[X]| ≥ tσX

] ≤ 1
t2

. (C.20)

Proof Observe that:

Pr
[|X − E[X]| ≥ tσX

]
= Pr[(X − E[X])2 ≥ t2σ2

X ].

The result follows by application of Markov’s inequality to (X − E[X])2.

We will use Chebyshev’s inequality to prove the following theorem.

Theorem C.3 Weak law of large numbers
Let (Xn)n∈N be a sequence of independent random variables with the same mean μ

and variance σ2 < ∞. Let Xn = 1
n

∑n
i=1 Xi, then, for any ε > 0,

lim
n→∞Pr[|Xn − μ| ≥ ε] = 0. (C.21)

Proof Since the variables are independent, we can write

Var[Xn] =
n∑

i=1

Var
[
Xi

n

]
=

nσ2

n2
=

σ2

n
.

Thus, by Chebyshev’s inequality (with t = ε/(Var[Xn])1/2), the following holds:

Pr[|Xn − μ| ≥ ε] ≤ σ2

nε2
,

which implies (C.21).

Example C.3 Applying Chebyshev’s inequality

Suppose we roll a pair of fair dice n times. Can we give a good estimate of the total
value of the n rolls? If we compute the mean and variance, we find μ = 7n and
σ2 = 35/6n (we leave it to the reader to verify these expressions). Thus, applying
Chebyshev’s inequality, we see that the final sum will lie within 7n ± 10

√
35
6 n in

at least 99 percent of all experiments. Therefore, the odds are better than 99 to 1
that the sum will be between 6.975M and 7.025M after 1M rolls.

Definition C.12 Covariance
The covariance of two random variables X and Y is denoted by Cov(X, Y ) and
defined by

Cov(X, Y ) = E
[
(X − E[X])(Y − E[Y ])

]
. (C.22)
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It is straightforward to see that two random variables X and Y are independent
iff Cov(X, Y ) = 0. The covariance defines a positive semidefinite and symmetric
bilinear form:

symmetry: Cov(X, Y ) = Cov(Y, X) for any two random variables X and Y ;

bilinearity: Cov(X + X ′, Y ) = Cov(X, Y ) + Cov(X ′, Y ) and Cov(aX, Y ) =
a Cov(X, Y ) for any random variables X, X ′, and Y and a ∈ R;

positive semidefiniteness: Cov(X, X) = Var[X] ≥ 0 for any random variable X.

The following Cauchy-Schwarz inequality holds for random variables X and Y with
Var[X] < +∞ and Var[Y ] < +∞:

|Cov(X, Y )| ≤
√

Var[X] Var[Y ]. (C.23)

The following definition

Definition C.13

The covariance matrix of a vector of random variables X = (X1, . . . , XN ) is the
matrix in R

N×N denoted by C(X) and defined by

C(X) = E
[
(X − E[X])(X − E[X])�

]
. (C.24)

Thus, C(X) = (Cov(Xi, Xj))ij . It is straightforward to show that

C(X) = E[XX�] − E[X] E[X]�. (C.25)

We close this appendix with the following well-known theorem of probability.

Theorem C.4 Central limit theorem
Let X1, . . . , Xn be a sequence of i.i.d. random variables with mean μ and standard
deviation σ. Let Xn = 1

n

∑n
i=1 Xi and σ2

n = σ2/n. Then, (Xn − μ)/σn converges
to the N(0, 1) in distribution, that is for any t ∈ R,

lim
n→∞Pr[(Xn − μ)/σn ≤ t] =

∫ t

−∞

1√
2π

e−
x2
2 dx .





Appendix D Concentration inequalities

In this appendix, we present several concentration inequalities used in the proofs
given in this book. Concentration inequalities give probability bounds for a random
variable to be concentrated around its mean, or for it to deviate from its mean or
some other value.

D.1 Hoeffding’s inequality

We first present Hoeffding’s inequality , whose proof makes use of the general
Chernoff bounding technique. Given a random variable X and ε > 0, this technique
consists of proceeding as follows to bound Pr[X ≥ ε]. For any t > 0, first Markov’s
inequality is used to bound Pr[X ≥ ε]:

Pr[X ≥ ε] = Pr[etX ≥ etε] ≤ e−tε E[etX ] . (D.1)

Then, an upper bound g(t) is found for E[etX ] and t is selected to minimize e−tεg(t).
For Hoeffding’s inequality, the following lemma provides an upper bound on E[etX ].

Lemma D.1 Hoeffding’s lemma
Let X be a random variable with E[X] = 0 and a ≤ X ≤ b with b > a. Then, for
any t > 0, the following inequality holds:

E[etX ] ≤ e
t2(b−a)2

8 . (D.2)

Proof By the convexity of x �→ ex, for all x ∈ [a, b], the following holds:

etx ≤ b − x

b − a
eta +

x − a

b − a
etb .

Thus, using E[X] = 0,

E[etX ] ≤ E
[
b − X

b − a
eta +

X − a

b − a
etb

]
=

b

b − a
eta +

−a

b − a
etb = eφ(t) ,
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where,

φ(t) = log
(

b

b − a
eta +

−a

b − a
etb

)
= ta + log

(
b

b − a
+

−a

b − a
et(b−a)

)
.

For any t > 0, the first and second derivative of φ are given below:

φ′(t) = a − aet(b−a)

b
b−a − a

b−aet(b−a)
= a − a

b
b−ae−t(b−a) − a

b−a

,

φ′′(t) =
−abe−t(b−a)

[ b
b−ae−t(b−a) − a

b−a ]2

=
α(1 − α)e−t(b−a)(b − a)2

[(1 − α)e−t(b−a) + α]2

=
α

[(1 − α)e−t(b−a) + α]
(1 − α)e−t(b−a)

[(1 − α)e−t(b−a) + α]
(b − a)2 .

where α denotes −a
b−a . Note that φ(0) = φ′(0) = 0 and that φ′′(t) = u(1−u)(b− a)2

where u = α
[(1−α)e−t(b−a)+α]

. Since u is in [0, 1], u(1 − u) is upper bounded by 1/4

and φ′(t) ≤ (b−a)2

4 . Thus, by the second order expansion of function φ, there exists
θ ∈ [0, t] such that:

φ(t) = φ(0) + tφ′(0) +
t2

2
φ′′(θ) ≤ t2

(b − a)2

8
, (D.3)

which completes the proof.

The lemma can be used to prove the following result known as Hoeffding’s inequality .

Theorem D.1 Hoeffding’s inequality
Let X1, . . . , Xm be independent random variables with Xi taking values in [ai, bi] for
all i ∈ [1,m]. Then for any ε > 0, the following inequalities hold for Sm =

∑m
i=1 Xi:

Pr[Sm − E[Sm] ≥ ε] ≤ e−2ε2/
Pm

i=1(bi−ai)
2

(D.4)

Pr[Sm − E[Sm] ≤ −ε] ≤ e−2ε2/
Pm

i=1(bi−ai)
2
. (D.5)

Proof Using the Chernoff bounding technique and lemma D.1, we can write:

Pr[Sm − E[Sm] ≥ ε] ≤ e−tε E[et(Sm−E[Sm])]

= Πm
i=1e

−tε E[et(Xi−E[Xi])] (independence of Xis)

≤ Πm
i=1e

−tεet2(bi−ai)
2/8 (lemma D.1)

= e−tεet2
Pm

i=1(bi−ai)
2/8

≤ e−2ε2/
Pm

i=1(bi−ai)
2
,
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where we chose t = 4ε/
∑m

i=1(bi − ai)2 to minimize the upper bound. This proves
the first statement of the theorem, and the second statement is shown in a similar
way.

When the variance σ2
Xi

of each random variable Xi is known and the σ2
Xi

s are
relatively small, better concentration bounds can be derived (see Bennett’s and
Bernstein’s inequalities proven in exercise D.4).

D.2 McDiarmid’s inequality

This section presents a concentration inequality that is more general than Hoeffd-
ing’s inequality. Its proof makes use of a Hoeffding’s inequality for martingale dif-
ferences.

Definition D.1 Martingale Difference
A sequence of random variables V1, V2, . . . is a martingale difference sequence with
respect to X1, X2, . . . if for all i > 0, Vi is a function of X1, . . . , Xi and

E[Vi+1|X1, . . . , Xi] = 0 . (D.6)

The following result is similar to Hoeffding’s lemma.

Lemma D.2

Let V and Z be random variables satisfying E[V |Z] = 0 and, for some function f

and constant c ≥ 0, the inequalities:

f(Z) ≤ V ≤ f(Z) + c . (D.7)

Then, for all t > 0, the following upper bound holds:

E[esV |Z] ≤ et2c2/8 . (D.8)

Proof The proof follows using the same steps as in that of lemma D.1 with
conditional expectations used instead of expectations: conditioned on Z, V takes
values in [a, b] with a = f(Z) and b = f(Z) + c and its expectation vanishes.

The lemma is used to prove the following theorem, which is one of the main results
of this section.

Theorem D.2 Azuma’s inequality
Let V1, V2, . . . be a martingale difference sequence with respect to the random vari-
ables X1, X2, . . ., and assume that for all i > 0 there is a constant ci ≥ 0 and
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random variable Zi, which is a function of X1, . . . , Xi−1, that satisfy

Zi ≤ Vi ≤ Zi + ci . (D.9)

Then, for all ε > 0 and m, the following inequalities hold:

Pr
[ m∑

i=1

Vi ≥ ε

]
≤ exp

( −2ε2∑m
i=1 c2

i

)
(D.10)

Pr
[ m∑

i=1

Vi ≤ −ε

]
≤ exp

( −2ε2∑m
i=1 c2

i

)
. (D.11)

Proof For any k ∈ [1,m], let Sk =
∑k

i=1 Vk. Then, using Chernoff’s bounding
technique, for any t > 0, we can write

Pr
[
Sm ≥ ε

] ≤ e−tε E[etSm ]

= e−tε E
[
etSm−1 E[etVm |X1, . . . , Xm−1]

]
≤ e−tε E[etSm−1 ]et2c2

m/8 (lemma D.2)

≤ e−tεet2
Pm

i=1 c2
i /8 (iterating previous argument)

= e−2ε2/
Pm

i=1 c2
i ,

where we chose t = 4ε/
∑m

i=1 c2
i to minimize the upper bound. This proves the first

statement of the theorem, and the second statement is shown in a similar way.

The following is the second main result of this section. Its proof makes use of
Azuma’s inequality.

Theorem D.3 McDiarmid’s inequality
Let X1, . . . , Xm ∈ Xm be a set of m ≥ 1 independent random variables and
assume that there exist c1, . . . , cm > 0 such that f : Xm → R satisfies the following
conditions: ∣∣f(x1, . . . , xi, . . . , xm) − f(x1, . . . , x

′
i, . . . xm)

∣∣ ≤ ci , (D.12)

for all i ∈ [1,m] and any points x1, . . . , xm, x′
i ∈ X . Let f(S) denote f(X1, . . . , Xm),

then, for all ε > 0, the following inequalities hold:

Pr[f(S) − E[f(S)] ≥ ε] ≤ exp
( −2ε2∑m

i=1 c2
i

)
(D.13)

Pr[f(S) − E[f(S)] ≤ −ε] ≤ exp
( −2ε2∑m

i=1 c2
i

)
. (D.14)

Proof Define a sequence of random variables Vk, k ∈ [1,m], as follows: V =
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f(S) − E[f(S)], V1 = E[V |X1] − E[V ], and for k > 1,

Vk = E[V |X1, . . . , Xk] − E[V |X1, . . . , Xk−1] .

Note that V =
∑m

k=1 Vk. Furthermore, the random variable E[V |X1, . . . , Xk] is a
function of X1, . . . , Xk. Conditioning on X1, . . . , Xk−1 and taking its expectation is
therefore:

E
[
E[V |X1, . . . , Xk]|X1, . . . , Xk−1

]
= E[V |X1, . . . , Xk−1],

which implies E[Vk|X1, . . . , Xk−1] = 0. Thus, the sequence (Vk)k∈[1,m] is a martin-
gale difference sequence. Next, observe that, since E[f(S)] is a scalar, Vk can be
expressed as follows:

Vk = E[f(S)|X1, . . . , Xk] − E[f(S)|X1, . . . , Xk−1] .

Thus, we can define an upper bound Wk and lower bound Uk for Vk by:

Wk = sup
x

E[f(S)|X1, . . . , Xk−1, x] − E[f(S)|X1, . . . , Xk−1]

Uk = inf
x

E[f(S)|X1, . . . , Xk−1, x] − E[f(S)|X1, . . . , Xk−1].

Now, by (D.12), for any k ∈ [1,m], the following holds:

Wk − Uk = sup
x,x′

E[f(S)|X1, . . . , Xk−1, x] − E[f(S)|X1, . . . , Xk−1, x
′] ≤ ck , (D.15)

thus, Uk ≤ Vk ≤ Uk + ck. In view of these inequalities, we can apply Azuma’s
inequality to V =

∑m
k=1 Vk, which yields exactly (D.13) and (D.14).

McDiarmid’s inequality is used in several of the proofs in this book. It can be
understood in terms of stability: if changing any of its argument affects f only in a
limited way, then, its deviations from its mean can be exponentially bounded. Note
also that Hoeffding’s inequality (theorem D.1) is a special instance of McDiarmid’s
inequality where f is defined by f : (x1, . . . , xm) �→ 1

m

∑m
i=1 xi.

D.3 Other inequalities

This section presents several other inequalities useful in the proofs of various results
presented in this book.
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D.3.1 Binomial distribution: Slud’s inequality

Let B(m, p) be a binomial random variable and k an integer such that p ≤ 1
4 and

k ≥ mp or p ≤ 1
2 and mp ≤ k ≤ m(1 − p). Then, the following inequality holds:

Pr[B ≥ k] ≥ Pr

[
N ≥ k − mp√

mp(1 − p)

]
, (D.16)

where N is in standard normal form.

D.3.2 Normal distribution: tail bound

If N is a random variable following the standard normal distribution, then for u > 0,

Pr[N ≥ u] ≥ 1
2

(
1 −

√
1 − e−u2

)
. (D.17)

D.3.3 Khintchine-Kahane inequality

The following inequality is useful in a variety of different contexts, including in the
proof of a lower bound for the empirical Rademacher complexity of linear hypotheses
(chapter 5).

Theorem D.4 Khintchine-Kahane inequality
Let (H, ‖ · ‖) be a normed vector space and let x1, . . . ,xm be m ≥ 1 elements of
H. Let σ = (σ1, . . . , σm)� with σis independent uniform random variables taking
values in {−1, +1} (Rademacher variables). Then, the following inequalities hold:

1
2

E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥2
]

≤
(

E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥])2

≤ E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥2
]

. (D.18)

Proof The second inequality is a direct consequence of the convexity of x �→ x2

and Jensen’s inequality (theorem B.4).
To prove the left-hand side inequality, first note that for any β1, . . . , βm ∈ R,

expanding the product
∏m

i=1(1 + βi) leads exactly to the sum of all monomi-
als βδ1

1 · · ·βδm
m , with exponents δ1, . . . , δm in {0, 1}. We will use the notation

βδ1
1 · · ·βδm

m = βδ and |δ| =
∑m

i=1 δm for any δ = (δ1, . . . , δm) ∈ {0, 1}m. In view of
that, for any (α1, . . . , αm) ∈ R

m and t > 0, the following equality holds:

t2
m∏

i=1

(1 + αi/t) = t2
∑

δ∈{0,1}m

αδ/t|δ| =
∑

δ∈{0,1}m

t2−|δ|αδ.
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Differentiating both sides with respect to t and setting t = 1 yields

2
m∏

i=1

(1 + αi) −
m∑

j=1

αj

∏
i �=j

(1 + αi) =
∑

δ∈{0,1}m

(2 − |δ|)αδ . (D.19)

For any σ ∈ {−1, +1}m, let Sσ be defined by Sσ = ‖sσ‖ with sσ =
∑m

i=1 σixi.
Then, setting αi = σiσ

′
i, multiplying both sides of (D.19) by SσSσ′ , and taking the

sum over all σ,σ′ ∈ {−1, +1}m yields

∑
σ,σ′∈{−1,+1}m

(
2

m∏
i=1

(1 + σiσ
′
i) −

m∑
j=1

σjσ
′
j

∏
i �=j

(1 + σiσ
′
i)
)

SσSσ′

=
∑

σ,σ′∈{−1,+1}m

∑
δ∈{0,1}m

(2 − |δ|)σδσ′δSσSσ′

=
∑

δ∈{0,1}m

(2 − |δ|)
∑

σ,σ′∈{−1,+1}m

σδσ′δSσSσ′

=
∑

δ∈{0,1}m

(2 − |δ|)
[ ∑

σ∈{−1,+1}m

σδSσ

]2
.

(D.20)

Note that the terms of the right-hand sum with |δ| ≥ 2 are non-positive. The terms
with |δ| = 1 are null: since Sσ = S−σ, we have

∑
σ∈{−1,+1}m σδSσ = 0 in that case.

Thus, the right-hand side can be upper bounded by the term with δ = 0, that is,

2
(∑

σ∈{−1,+1}m Sσ

)2

. The left-hand side of (D.20) can be rewritten as follows:

∑
σ∈{−1,+1}m

(2m+1 − m2m−1)S2
σ + 2m−1

∑
σ∈{−1,+1}m

σ′∈B(σ,1)

SσSσ′

= 2m
∑

σ∈{−1,+1}m

S2
σ + 2m−1

∑
σ∈{−1,+1}m

Sσ

( ∑
σ′∈B(σ,1)

Sσ′ − (m − 2)Sσ

)
,

(D.21)

where B(σ, 1) denotes the set of σ′ that differ from σ in exactly one coordinate
j ∈ [1,m], that is the set of σ′ with Hamming distance one from σ. Note that for any
such σ′, sσ −sσ′ = 2σjxj for one coordinate j ∈ [1,m], thus,

∑
σ′∈B(σ,1) sσ −sσ′ =

2sσ. In light of that and using the triangle inequality, we can write

(m − 2)Sσ = ‖msσ‖ − ‖2sσ‖ =
∥∥∥ ∑

σ′∈B(σ,1)

sσ

∥∥∥−
∥∥∥ ∑

σ′∈B(σ,1)

sσ − sσ′

∥∥∥
≤
∥∥∥ ∑

σ′∈B(σ,1)

sσ′

∥∥∥ ≤
∑

σ′∈B(σ,1)

Sσ′ .

Thus, the second sum of (D.21) is non-negative and the left-hand side of (D.20) can
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be lower bounded by the first sum 2m
∑

σ∈{−1,+1}m S2
σ. Combining this with the

upper bound found for (D.20) gives

2m
∑

σ∈{−1,+1}m

S2
σ ≤ 2

[ ∑
σ∈{−1,+1}m

Sσ

]2
.

Dividing both sides by 22m and using Pr[σ] = 1/2m gives Eσ[S2
σ] ≤ 2(Eσ[Sσ])2 and

completes the proof.

The constant 1/2 appearing in the first inequality of (D.18) is optimal. To see this,
consider the case where m = 2 and x1 = x2 = x for some non-zero vector x ∈ H.
Then, the left-hand side of the first inequality is 1

2

∑m
i=1 ‖xi‖2 = ‖x‖2 and the

right-hand side
(
Eσ

[‖(σ1 + σ2)x‖])2 = ‖x‖2(Eσ[|σ1 + σ2|])2 = ‖x‖2.
Note that when the norm ‖ · ‖ corresponds to an inner product, as in the case of

a Hilbert space H, we can write

E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥2
]

=
m∑

i,j=1

E
σ

[
σiσj(xi · xj)

]
=

m∑
i,j=1

E
σ
[σiσj ](xi · xj) =

m∑
i=1

‖xi‖2,

since by the independence of the random variables σi, for i �= j, Eσ[σiσj ] =
Eσ[σi] Eσ[σj ] = 0. Thus, (D.18) can then be rewritten as follows:

1
2

m∑
i=1

‖xi‖2 ≤
(

E
σ

[∥∥∥ m∑
i=1

σixi

∥∥∥])2

≤
m∑

i=1

‖xi‖2 . (D.22)

D.4 Chapter notes

The improved version of Azuma’s inequality [Hoeffding, 1963, Azuma, 1967] pre-
sented in this chapter is due to McDiarmid [1989]. The improvement is a reduction
of the exponent by a factor of 4. This also appears in McDiarmid’s inequality, which
is derived from the inequality for bounded martingale sequences. The inequalities
presented in exercise D.4 are due to Bernstein [1927] and Bennett [1962]; the exercise
is from Devroye and Lugosi [1995].

The binomial inequality of section D.3.1 is due to Slud [1977]. The tail bound
of section D.3.2 is due to Tate [1953] (see also Anthony and Bartlett [1999]). The
Khintchine-Kahane inequality was first studied in the case of real-valued variables
x1, . . . , xm by Khintchine [1923], with better constants and simpler proofs later
provided by Szarek [1976], Haagerup [1982], and Tomaszewski [1982]. The inequality
was extended to normed vector spaces by Kahane [1964]. The proof presented here
is due to Lata�la and Oleszkiewicz [1994] and provides the best possible constants.
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D.5 Exercises

D.1 Twins paradox. Professor Mamoru teaches at a university whose computer
science and math building has F = 30 floors.

(1) Assume that the floors are independent and that they have the same
probability to be selected by someone taking the elevator. How many people
should take the elevator in order to make it likely (probability more than half)
that two of them go to the same floor? (Hint : use the Taylor series expansion of
e−x = 1 − x + . . . and give an approximate general expression of the solution.)

(2) Professor Mamoru is popular, and his floor is in fact more likely to be
selected than others. Assuming that all other floors are equiprobable, derive
the general expression of the probability that two persons go to the same floor,
using the same approximation as before. How many people should take the
elevator in order to make it likely that two of them go to the same floor when
the probability of Professor Mamoru’s floor is .25, .35, or .5? When q = .5,
would the answer change if the number of floors were instead F = 1,000?

(3) The probability models assumed in (1) and (2) are both naive. If you had
access to the data collected by the elevator guard, how would you define a more
faithful model?

D.2 Concentration bounds. Let X be a non-negative random variable satisfying
Pr[X > t] ≤ ce−2mt2 for all t > 0 and some c > 0. Show that E[X2] ≤ log(ce)

2m (Hint :
to do that, use the identity E[X2] =

∫∞
0

Pr[X2 > t]dt, write
∫∞
0

=
∫ u

0
+
∫∞

u
, bound

the first term by u and find the best u to minimize the upper bound).

D.3 Comparison of Hoeffding’s and Chebyshev’s inequalities. Let X1, . . . , Xm be
a sequence of random variables taking values in [0, 1] with the same mean μ and
variance σ2 < ∞ and let X = 1

m

∑m
i=1 Xi.

(a) For any ε > 0, give a bound on Pr[|X−μ| > ε] using Chebyshev’s inequality,
then Hoeffding’s inequality. For what values of σ is Chebyshev’s inequality
tighter?

(b) Assume that the random variables Xi take values in {0, 1}. Show that
σ2 ≤ 1

4 . Use this to simplify Chebyshev’s inequality. Choose ε = .05 and
plot Chebyshev’s inequality thereby modified and Hoeffding’s inequality as a
function of m (you can use your preferred program for generating the plots).

D.4 Bennett’s and Bernstein’s inequalities. The objective of this problem is to prove



378 Concentration inequalities

these two inequalities.

(a) Show that for any t > 0, and any random variable X with E[X] = 0,
E[X2] = σ2, and X ≤ c,

E[etX ] ≤ ef(σ2/c2), (D.23)

where

f(x) = log
( 1

1 + x
e−ctx +

x

1 + x
ect
)
.

(b) Show that f ′′(x) ≤ 0 for x ≥ 0.

(c) Using Chernoff’s bounding technique, show that

Pr
[

1
m

m∑
i=1

Xi ≥ ε

]
≤ e−tmε+

Pm
i=1 f(σ2

Xi
/c2),

where (σ2
Xi

is the variance of Xi.

(d) Show that f(x) ≤ f(0) + xf ′(0) = (ect − 1 − ct)x.

(e) Using the bound derived in (4), find the optimal value of t.

(f) Bennett’s inequality . Let X1, . . . , Xm be independent real-valued random
variables with zero mean such that for i = 1, . . . ,m, Xi ≤ c. Let σ2 =
1
m

∑m
i=1 σ2

Xi
. Show that

Pr
[

1
m

m∑
i=1

Xi > ε

]
≤ exp

(
−mσ2

c2
θ

(
εc

σ2

))
, (D.24)

where θ(x) = (1 + x) log(1 + x) − x.

(g) Bernstein’s inequality . Show that under the same conditions as Bennett’s
inequality

Pr
[

1
m

m∑
i=1

Xi > ε

]
≤ exp

(
− mε2

2σ2 + 2cε/3

)
. (D.25)

(Hint : show that for all x ≥ 0, θ(x) ≥ h(x) = 3
2

x2

x+3 .)

(h) Write Hoeffding’s inequality assuming the same conditions. For what values
of σ is Bernstein’s inequality better than Hoeffding’s inequality?



Appendix E Notation

Table E.1 Summary of notation.

R Set of real numbers

R+ Set of non-negative real numbers

R
n Set of n-dimensional real-valued vectors

R
n×m Set of n × m real-valued matrices

[a, b] Closed interval between a and b

(a, b) Open interval between a and b

{a, b, c} Set containing elements a, b and c

N Set of natural numbers, i.e., {0, 1, . . .}
log Logarithm with base e

loga Logarithm with base a

S An arbitrary set

|S| Number of elements in S
s ∈ S An element in set S
X Input space

Y Target space

H Feature space

〈·, ·〉 Inner product in feature space

v An arbitrary vector

1 Vector of all ones

vi ith component of v

‖v‖ L2 norm of v

‖v‖p Lp norm of v

u ◦ v Hadamard or entry-wise product of vectors u and v
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f ◦ g Composition of functions f and g

T1 ◦ T2 Composition of weighted transducers T1 and T2

M An arbitrary matrix

‖M‖2 Spectral norm of M

‖M‖F Frobenius norm of M

M� Transpose of M

M† Pseudo-inverse of M

Tr[M] Trace of M

I Identity matrix

K : X × X → R Kernel function over X
K Kernel matrix

1A Indicator function indicating membership in subset A
R(·) Generalization error or risk

R̂(·) Empirical error or risk

Rm(·) Rademacher complexity over all samples of size m

R̂S(·) Empirical Rademacher complexity with respect to sample S

N(0, 1) Standard normal distribution

E
x∼D

[·] Expectation over x drawn from distribution D

Σ∗ Kleene closure over a set of characters Σ
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Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order
bounds for prediction with expert advice. In Conference on Learning Theory,
pages 217–232, 2005.

Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cam-



384 REFERENCES

bridge University Press, New York, NY, USA, 2000.

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, Ad-
aboost and Bregman distances. Machine Learning, 48:253–285, September 2002.

Corinna Cortes, Patrick Haffner, and Mehryar Mohri. Rational kernels: Theory and
algorithms. Journal of Machine Learning, 5:1035–1062, 2004.

Corinna Cortes, Leonid Kontorovich, and Mehryar Mohri. Learning languages with
rational kernels. In Conference on Learning Theory, volume 4539 of Lecture Notes
in Computer Science, pages 349–364. Springer, Heidelberg, Germany, June 2007a.

Corinna Cortes, Yishay Mansour, and Mehryar Mohri. Learning bounds for impor-
tance weighting. In Advances in Neural Information Processing Systems, Van-
couver, Canada, 2010a. MIT Press.

Corinna Cortes and Mehryar Mohri. AUC optimization vs. error rate minimization.
In Advances in Neural Information Processing Systems, 2003.

Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under the
ROC curve. In Advances in Neural Information Processing Systems, volume 17,
Vancouver, Canada, 2005. MIT Press.

Corinna Cortes, Mehryar Mohri, Dmitry Pechyony, and Ashish Rastogi. Stability
of transductive regression algorithms. In International Conference on Machine
Learning, Helsinki, Finland, July 2008a.

Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. An alternative ranking
problem for search engines. In Workshop on Experimental Algorithms, pages
1–22, 2007b.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning sequence
kernels. In Proceedings of IEEE International Workshop on Machine Learning
for Signal Processing, Cancún, Mexico, October 2008b.

Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact of kernel
approximation on learning accuracy. In Conference on Artificial Intelligence and
Statistics, 2010b.

Corinna Cortes, Mehryar Mohri, and Jason Weston. A general regression framework
for learning string-to-string mappings. In Predicted Structured Data. MIT Press,
2007c.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

David Cossock and Tong Zhang. Statistical analysis of Bayes optimal subset
ranking. IEEE Transactions on Information Theory, 54(11):5140–5154, 2008.

Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. Chapman &
Hall/CRC, 2nd edition, 2000.



REFERENCES 385

Koby Crammer and Yoram Singer. Improved output coding for classification using
continuous relaxation. In Advances in Neural Information Processing Systems,
2001.

Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. Journal of Machine Learning, 2, 2002.

Robert Crites and Andrew Barto. Improving elevator performance using reinforce-
ment learning. In Advances in Neural Information Processing Systems, pages
1017–1023. MIT Press, 1996.

Felipe Cucker and Steve Smale. On the mathematical foundations of learning.
Bulletin of the American Mathematical Society, 39(1):1–49, 2001.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson
and Lindenstrauss. Random Structures and Algorithms, 22(1):60–65, 2003.
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DFA, see DFA learning minimum
consistent

expert, 149
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learner, 5
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constraint
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affine, 66, 68, 72, 73, 191, 253, 260,

354
differentiable, 66, 73, 191, 248
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strong, 355
weak, 355
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convex, 72, 83, 126, 161, 218, 257, 352,
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d-gon, 44, 45
combination, 132–134, 192
constraint, 68, 72, 73
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function, 51, 66, 72, 73, 126, 128,
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hull, 42–44, 132, 220, 350
intersection, 57
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potential, 141, 142
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upper bound, 72, 73, 126, 128, 218

convexity, 36, 53, 72, 91, 158, 161, 173,
180, 181, 207, 218, 248, 352–
354, 357, 369, 374

covariance, 366, 367
matrix, 282, 283, 287, 290, 367

covering, 61
numbers, 55, 61, 233

CRFs, 205, 207
cross-validation, 140, 256

n-fold, 5, 6, 28, 72, 87, 198
error, 5, 6, 86
leave-one-out, 6

data
set, 2
test, 4
training, 3
unseen, 3
validation, 3

DCG, 233, 234
normalized, 233

decision epoch, 315, 330, 332, 334
decision stump, 130, 140, 141
decision trees, 129, 130, 141, 183, 191,

194, 195, 197, 198, 206, 208,
263, 299, 300, 302, 310

binary, 150, 194
binary space partition trees, 195
classification, 299
learning, 195, 197, 206, see also

GreedyDecisionTrees algorithm
node, 194
question, 194–196, 299

categorical, 194
numerical, 194
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stump, see also boosting stump, see
decision stump

DFA, 295, 296, 298–300, 302–304, 309–
311

acyclic, 295
consistent, 296
equivalent, 295
learning, 303, 309

minimum consistent, 296
learning with queries, 298, 303
minimal, 295, 296, 298, 310
minimization, 296
reverse, 304
VC-dimension, 311

dichotomy, 41–46
differentiable

function, 349, 351, 352, 356
upper bound, 126, 128

dimensionality reduction, 2, 7, 101, 281,
285, 288, 290

discounted cumulative gain, see DCG
distribution, 359, 360

χ2-squared, 288, 289, 361
absolutely continuous, 360
binomial, 360
chi-squared, 361
density function, 360
Gaussian, 360
Laplace, 361
normal, 360
Poisson, 361
probability, 359

distribution-free model, 13
DNF formula, 20, 311

disjoint, 310
doubling trick, 155, 158, 174, 175
dual, 251

function, 354
norm, 342
optimization, 66–68, 74, 75, 83, 84,

100, 191, 207, 249, 255, 264, 355
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variables, 67, 70, 74, 264, 354
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gap, 355
strong, 68, 355
weak, 355

DualPerceptron, 167, 168

early stopping, 141
edge, see classifier edge
emphasis function, 231, 232, 235
empirical kernel map, see kernel
empirical risk minimization, 26, 27, 38
ensemble

algorithms, 121
hypotheses, 133, 220
margin bound, 133
methods, 121, 122, 220
ranking, 220

envelope, 262
environment, 1, 8, 313, 314, 326, 336

MDP, 315
model, 313, 314, 319, 325, 326, 330
unknown, 336

Erdös, 48
ERM, see empirical risk minimization
error, 12, see also risk

approximation, 26
Bayes, 25
cross-validation, 5
empirical, 8, 12, 184, 380
estimation, 26
generalization, 8, 12, 380
leave-one-out, 69
mean squared, 238
reconstruction, 282
test, 5
training, 5
true, 12

event, 30, 118, 119, 359, 361, 362
elementary, 359
independent, 361
indicator, 12
mutually disjoint, 362
mutually exclusive, 359
set, 359

examples, 3, 11
i.i.d., 12
incorrectly labeled, 141
labeled, 4
misclassified, 144
negative, 29
positive, 19, 303
unlabeled, 7

expectation, 363
linearity, 363

experience, 1, 336
expert, 32, 148–154, 156, 157, 168, 169,

171, 174, 175, 179
active, 149
advice, 32, 147, 148
algorithm, 175
best, 148, 151, 152, 175

exploitation, 8, 314
exploration, 8, 314

Boltzmann, 334
exploitation dilemma, 8, 314

Exponential-Weighted-Average algorithm,
8, 156, 157, 173, 174

false negative, 14
false positive, 14

error, 87
rate, 225, 226

fat-shattered, 244
fat-shattering, 262

dimension, 244, 245
feature, 3

extraction, 281
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190, 214, 247, 252, 254, 255,
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poor, 96
relevant, 3, 4, 118, 204
space, 76, 82, 83, 90, 91, 96, 117,

118, 140, 194, 213, 246, 247,
251, 310, 379

uncorrelated, 96
vector, 4

Fermat’s theorem, 349
final

state, 107–109, 294, 295, 299–301,
304–308, 312, 330

weight, 107, 108, 110, 114
fixed point, 199, 321, 326, 327, 329, 333
Frobenius

norm, 283, 345, 380
product, 345

Fubini’s theorem, 49, 363
function

affine, 66, 246, 355
concave, see concave function
continuous, 91, 96, 120
contracting, 320, 321
convex, see convex function
differentiable, 192, 349, 351, 352,

356
final weight, 107
kernel, 120
Lipschitz, 78, 80, 96, 186, 188, 212,

240, 254, 255, 271, 274, 276,
320, 321

maximum, 352
measurable, see measurable func-

tion
moment-generating, 288, 364, 365,

370
quasi-concave, 176
semi-continuous, 176

state-action value, 318, 326, 331,
332

supremum, 36
symmetric, 91

game, 138
theory, 121, 137, 139, 142, 147, 176,

339
value, 139
zero-sum, 138, 139, 174

gap penalty, 113
generalization, 5

bound, 16, 17, 22, 23, 26, 33, 35, 37,
38, 40, 48, 54, 55, 59–61, 75,
77–80, 103, 132–134, 183, 185,
187, 190, 197, 206, 208, 211,
213, 237, 239–242, 244, 247,
251, 254, 255, 259, 262, 264,
267, 276–278, see also margin
bound, see also stability bound,
see also VC-dimension bound

error, 8, 12, 13, 18, 21, 22, 24–26,
29, 48, 61, 63, 69, 70, 82, 118,
131, 136, 144, 148, 172, 174,
184, 187, 200, 208, 210, 212,
213, 221, 238, 268, 270, 276

gradient, 66, 73, 224, 349
descent, 337, see also stochastic gra-

dient descent
Gram matrix, 68, 92, 116, see also kernel

matrix
graph, 204, 287

acyclic, 111
Laplacian, 286, 291
neighborhood, 287
structure, 205

GreedyDecisionTrees algorithm, 195
growth function, 33, 38–41, 45, 47, 56

generalization bound, 40
lower bound, 56

Hölder’s inequality, 180, 259, 342



INDEX 403

Halving algorithm, 148–150, 152
Hamming distance, 184, 201, 202, 204,

375
Hessian, 66, 68, 180, 349, 351
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116, 117, 119, 342, 376
pre-, 96
reproducing kernel, 95, 96, 115, 270

hinge loss, 72, 73, 82, 83, 177, 276
quadratic, 72, 73, 278

Hoeffding’s inequality, 21, 39, 61, 158,
170, 173, 235, 238, 239, 369–
371, 373, 377, 378

horizon, 158, 315
finite, 315, 316
infinite, 316, 317

discounted, 316
undiscounted, 316

hyperplane, 42, 63
canonical, 65

VC-dimension, 76
equation, 64
marginal, 65
maximum-margin, 64
minimal error, 84
optimal, 83
pseudo-dimension, 242
soft-margin, 84
tangent, 271
VC-dimension, 42

hypothesis, 4
Bayes, 25
best-in-class, 26
consistent, 17
linear, 63
set, 4, 12

finite, 8, 11
infinite, 8, 33

single, 22

i.i.d., 361

identification in the limit, see language
identification in the limit

impurity, 196, 197
entropy, 196
Gini index, 196
mean squared error, 198
misclassification, 196

inconsistent, 11
case, 21, 239
hypothesis, 21

independence, see random variable inde-
pendence

pairwise on irrelevant alternatives,
228

inequality
Azuma’s, 172, 371–373, 376
Bennett’s, 371, 377, 378
Bernstein’s, 371, 377, 378
Cauchy-Schwarz, 77, 94, 96, 102,

162, 180, 190, 273, 275, 342,
343, 367

Chebyshev’s, 365, 366, 377
concentration, see concentration in-

equalities
Hölder’s, 180, 259, 342
Hoeffding’s, 21, 39, 61, 158, 170,

173, 235, 238, 239, 369–371,
373, 377, 378

Jensen’s, 36, 39, 53, 76, 77, 102, 158,
190, 353, 374

Khintchine-Kahane, 103, 156, 374,
376

Markov’s, 288, 363, 366, 369
McDiarmid’s, 33, 35, 36, 117, 269,

371–373, 376
Pinsker’s, 279
Young’s, 343

inference
automata, 303, 307
transductive, 7

input space, 11
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instances, 3, 11
sparse, 177
weighted, 143

interaction, 1, 313, 314
Isomap, 285, 286, 290

Jensen’s inequality, 36, 39, 53, 76, 77,
102, 158, 190, 353, 374

Johnson-Lindenstrauss lemma, 288–290

Karush-Kuhn-Tucker conditions
see KKT conditions, 356

kernel, 89, 90
bigram, 113

gappy, 113
continuous, 115
convolution, 115
difference, 116
empirical map, 96–98, 260
functions, 89, 90
Gaussian, 94
matrix, 92
methods, 89, 90
n-gram, 120
negative definite symmetric, 89, 103
normalized, 97
polynomial, 92, 117
positive definite symmetric, 8, 89,

91, 92
closure properties, 99

positive semidefinite, 92
rational, 8, 83, 89, 106, 111, 113,

115, 119, 310
PDS, 112–115

ridge regression, see KRR
sequence, 106, 112, see also kernel

rational
sigmoid, 94
string, 115
tensor product, 99

KernelPerceptron, see Perceptron algo-
rithm kernel

Khintchine-Kahane inequality, 103, 156,
374, 376

KKT conditions, 66, 73, 191, 249, 253,
255, 356, 357

KPCA, see PCA kernel
Kullback-Leibler divergence, 279

labels, 3, 8, 11, 25, 31, 42
categories, 3
real-valued, 3
target, 96
true, 5
values, 3

Lagrange, 357
function, 354, see also Lagrangian
multipliers, 85, 86
variables, 66, 73, 74, 354

Lagrangian, 66, 67, 73, 74, 191, 248, 253,
255, 354–357

language
k-reversible, 310–312
accepted, 295, 296, 304, 307
complement, 110
context-free, see context-free lan-

guage
formal, 339
identification in the limit, 294, 303,

308, 310
learning, 9, 293, 294, 303
linearly separable, 115
positive presentation, 308
regular, 293, 295, 310
reverse, 304
reversible, 304, 305, 308–310

learning, 311
Laplacian eigenmaps, 285–288, 290, 291
Lasso, 9, 237, 245, 257–260, 266, 277

group, 261
on-line, see OnLineLasso algorithm

law of large numbers
strong, 326, 327
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weak, 366
learner, 7

active, 296, 313
base, 123, 127, 130, 136, 139, 143,

144, 191
consistent, 5
passive, 313
strong, 122
weak, 121, 129, 130, 136, 141, 143,

194, 206, 214
learning, 115, 313

active, 8
exact, 294, 295
on-line, 7
policy, 334
problem, 314
randomized, 153
reinforcement, 8
semi-supervised, 7
supervised, 7
transductive, 7
unsupervised, 7
with queries, 297

learning bound, see generalization bound
consistent case, 17
finite hypothesis set, 17, 23
inconsistent case, 23

LearnReversibleAutomata algorithm, 303,
304, 306–310

lemma
contraction, see Talagrand’s lemma
Hoeffding’s, 369
Johnson-Lindenstrauss, 288–290
Massart’s, 39, 40, 54, 56, 258
Sauer’s, 45–48, 55, 56, 58
Talagrand’s, 56, 78, 186, 240, 254

linearly separable, 70, 71, 77, 83, 90,
93, 115, 118, 140, 162–164, 166,
167, 224, see also realizable set-
ting

Lipschitz

function, see function Lipschitz
property, 79, 321

LLE, 287, 288, 290, 292
locally linear embedding, see LLE
logistic regression, 128, 129, 141, 142
loss

ε-insensitive, 252
quadratic, 255

σ-admissible, 271
average, 172
binary, see loss, zero-one
bounded, 171
convex, 128
convex upper bound, 126, 128
cumulative, 148
expected, 139
exponential, 126
function, 4, 34, 238
Hamming, 204
hinge, see hinge loss
Huber, 256
logistic, 128
margin, 77, 185

empirical, 78
matrix, 138
misclassification, 4
multi-label, 192
non-convex, 181
non-differentiable, 277
pairwise ranking, 213

exponential, 218
ranking

disagreement, 227
top k, 232

squared, 4, 148, 238
unbounded, 238
zero-one, 4, 37, 148, 154

pairwise misranking, 218

M3N, 205, 207
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manifold learning, 2, 281, 284, 285, 290,
see also dimensionality reduc-
tion

margin, 63, 64, 75, 162, 185
L1-, 131, 132
bound, 8, 80
geometric, 75
hard, 71
loss, 77, 78, 185

empirical, 78
maximum-, 64, 65, 136, 137, 140,

177, 233
multi-class, 185
pairwise ranking, 211
soft, 71, 84, 141, 142
theory, 8, 64, 75, 83, 121, 137

margin bound
binary classification, 80
covering numbers, 233
ensemble

Rademacher complexity, 133
ranking, 220
VC-Dimension, 133

kernel-based hypotheses, 103
multi-class classification, 187, 190
ranking, 212, 234

kernel-based hypotheses, 213
MarginPerceptron, 177, 178
Markov decision process, see MDP
Markov’s inequality, 288, 363, 366, 369
martingale differences, 371, 373, 376
Massart’s lemma, 39, 40, 54, 56, 258
matrix, 344

Gram, 68
identity, 66
kernel, 92
loss, 138
multiplication, 108
norm

induced, 344
positive semidefinite, 346

trace, 103, 344, 346
transpose, 344
upper triangular, 346

maximum likelihood, 129
Maximum-Margin Markov Networks, see

M3N
McDiarmid’s inequality, 33, 35, 36, 117,

269, 371–373, 376
MDP, 313, 314

environment, 315
finite, 315
partially observable, 336

mean, 363, 366, 367, 369, 373, 377
estimation, 326
zero-, 360, 364, 378

measurable, 12, 34, 359
function, 25, 118, 243, 353
subset, 237

Mercer’s
condition

see condition Mercer’s, 396
theorem, 91

metric space, 320
complete, 320, 321

mirror image, 304
mistake, 149–152, 171, 177

bound, 8, 149–151, 161, 166, 169,
171, 176

cumulative, 153
model, 148, 171
rate, 150

model
based approach, 326
continuous-time, 315
discrete-time, 315
distribution-free, 13
free approach, 326
selection, 5, 6, 27

moment-generating function, 288, 364,
365, 370

mono-label case, 183–185, 207
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multi-label
case, 183, 184, 192, 207
error, 207
loss, 192

n-way composition, 113, 115
NDCG, see DCG normalized
NDS kernel, see kernel negative-definite

symmetric
NFA, 295, 309

consistent, 309
node impurity, see impurity
noise, 25, 26, 30, 54, 140–142, 144

assumption, 26
average, 25, 26
learning in presence of, 30
model, 31
random, 34, 141, 142, 328
rate, 30, 31
source, 198

non-convex
loss, 181

non-differentiable loss, 271, 277
non-realizable case, 11, 33, 50, 51, 54, 55,

150
norm, 341

equivalent, 341
Frobenius, 345
group, 189, 261, 345
matrix, see matrix norm
spectral, 344
vector, see vector norm

Occam’s razor principle, 24, 29, 48, 63,
239, 296

on-line learning, 147
on-line to batch conversion, 147, 171,

176, 181
On-line-SVM algorithm, 177
one-versus-all, 8, 198–202, 206
one-versus-one, 8, 199–202, 208

one-versus-rest, see one-versus-all
OnLineDualSVR algorithm, 262
OnLineLasso algorithm, 262, 265, 266
operator norm, 344
optimization

constrained, 354
dual, 355
primal, 354

outlier, 71, 72, 74, 141
OVA, see one-versus-all
OVO, see one-versus-one

PAC-learning, 8, 11, 13, 14, 16, 18–21,
26, 28–33, 54, 59, 121, 147

agnostic, 24, 25, 50
algorithm, 13, 14, 18, 32, 58
efficiently, 13
model, 11, 13, 14, 20, 24, 28, 29
weakly, 121
with membership queries, 297

packing numbers, 55
pairwise consistent, 227
paradigm

state-partitioning, 303
state-splitting, 303

parse tree, 106
partially observable Markov decision

process, see POMDP
path, 107–111, 114, 115, 161, 175, 294,

295
ε-, 109, 110, 115
accepting, 107, 108, 111, 112, 114,

294, 295, 305
label, 107
matching, 109
redundant, 109
shortest- problem

on-line, 175
successful, see accepting

PCA, 9, 281
kernel, 9, 281, 283–288, 290, 292



408 INDEX

PDS kernel, see kernel positive-definite
symmetric

Perceptron algorithm, 8, 84, 147, 159–
163, 166–169, 171, 176–178, 234

dual, 167, 168
kernel, 168, 176, 181
margin, see MarginPerceptron
ranking, see RankPerceptron
update, 177
voted, 163, 168

Pinsker’s inequality, 279
pivot, 230
planning, 9

algorithm, 319
problem, 313, 314, 319

policy, 313–315, 322, 326
ε-greedy, 333
iteration, 319, 322–324, 337, see also

PolicyIteration algorithm
learning, 334
non-stationary, 316
stationary, 315
value, 313, 316

PolicyIteration algorithm, 323
Polynomial-Weighted-Average algorithm,

179
POMDP, 336
positive semidefinite, 92, 346
potential function, 151, 152, 154, 157,

170, 179, 180
precision, 232

average, 232
preference

-based
ranking, 9
setting, 209, 210, 226, 227, 233

function, 210, 211, 226–230
prefix, 114, 294, 301, 304, 308
principal component analysis, see PCA
prior knowledge, 4, 96, 98
probabilistic method, 48, 55, 288

probability, 359
conditional, 361
distribution, 359
joint mass function, 359
mass function, 359
theorem of total, 362

probably approximately correct, see PAC
pseudo-dimension, 237, 239, 242–245,

262
pseudo-inverse, 98, 246, 287, 346

Q-learning
algorithm, 326, 330–332, 334, 335,

337
update, 332

QP, 66, 68, 83, 85, 192, 200, 205, 253,
255, 259, 260

convex, 66, 74
quadratic programming, see QP
query

equivalence, 297, 298, 300, 303, 311
membership, 297–303, 311
subset, 226, 227

QueryLearnAutomata algorithm, 298,
300

QuickSort algorithm, 230
randomized, 230, 231, 234

Rademacher complexity, 8, 33–40, 54, 56,
63, 78, 84, 133, 134, 183, 189,
190, 209, 211, 213, 220, 233,
237, 239, 241, 245, 267, 380

Lp loss functions, 240
binary classification bound, 37
bound, 48, 240, 254, 259
convex combinations, 132, 133
empirical, 34, 37, 38, 55, 77, 102,

103, 186, 380
generalization bounds, 103
kernel-based hypotheses, 102, 247
linear hypotheses, 77
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linear hypotheses with bounded L1

norm, 257, 258
local, 54
margin bound

binary classification, 80
ensembles, 133
multi-class classification, 187
ranking, 212

multi-class kernel-based hypotheses,
189, 206

regression bound, 239, 240, 262
Rademacher variables, 34
radial basis function, 94
Radon’s theorem, 43, 44
random variable, 359

independence, 39, 76, 289, 327, 361,
363, 365, 370, 376

independent, 363, 365, 367
measurable, 359
moment-generating function, 364

Randomized-Weighted-Majority algorithm,
147, 153–155, 175, 179

rank aggregation, 233
RankBoost, 8, 206–209, 214–220, 222–

224, 233–235
ranking, 2, 7, 209, 229

bipartite, 221, 234
multipartite, 235
RankBoost, 214
with SVMs, 213

RankPerceptron, 234
rate

false positive, 225, 226
true positive, 225, 226, 232

rational kernel, 8, 83, 89, 106, 111, 113,
115, 119, 310

PDS, 112–115
Rayleigh quotient, 283, 346
RBF, see radial basis function
realizable case, 11, 49, 55, 59, 149–152,

162, 163

recall, 232
regression, 2, 237

boosting trees, 263
decision trees, 263
group norm, 260
KRR, 245, 247
Lasso, 245, 257
linear, 237, 245
neural networks, 263
on-line, 261
ordinal, 234
ridge, see KRR
SVR, 245, 252
unbounded, 238, 262

regret, 148, 152, 154–157, 159, 172, 173,
175, 179–181, 228, 229

average, 155
bound, 157–159, 174, 175, 179, 180,

209, 229
second-order, 179

cumulative, 179
external, 148, 175, 176
instantaneous, 179, 180
internal, 175, 176
lower bound, 155
minimization, 173–175, 179
per round, 155
preference function, 228, 229
ranking, 228
swap, 175, 176
weak, 228

regular
expression, 114, 295
language, 295

regularization, 28, 142, 246
L1-, 141, 142
-based algorithm, 28
parameter, 28, 181, 197
path, 259
term, 28, 248, 250, 257, 271

regularizer, 28
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relative entropy, 142, 170, 171, 279
representer theorem, 101, 115
reproducing

kernel Hilbert space, see Hilbert
space

property, 95
reward, 8, 313–316, 330, 332, 335

cumulative, 318
delayed, 314
deterministic, 315, 317, 331
expected, 316, 319, 322
future, 316, 335
immediate, 8, 314, 316, 326, 335
long-term, 8
probability, 315, 319, 325, 326
vector, 320

risk, 12, 380, see also error
empirical, 12, 380

minimization, see ERM
empirical minimization, 27
penalized empirical, 181
structural

minimization, see SRM
RKHS, see Hilbert space
ROC curve, 209, 224–226, 233, see also

AUC
RWM algorithm, see Randomized-

Weighted-Majority algorithm

saddle point, 356, 357
necessary condition, 356
sufficient condition, 356

sample
complexity, 1, 11, 14, 16–18, 29, 30,

33, 52, 58
test, 4
training, 3
validation, 3

sample space, 359
SARSA algorithm, 334, 335
Sauer’s lemma, 45–48, 55, 56, 58

scenario
deterministic, 25, 184, 210, 237
randomized, 153
stochastic, 24, 25, 147, 184, 210, 227,

237
score-based setting, 209, 211, 214, 221,

226, 227, 233
scores, 4
scoring function, 185, 189, 199, 202, 203,

210, 211, 235
sequence, 90, 106, 110, 111

kernel, 89, 106, 108, 111, 112
bigram, 113

mapping, 111
protein, 106
similarity, 106
stochastic, 155

sequential minimal optimization algo-
rithm, see SMO algorithm

setting
deterministic, 25
stochastic, 24, 25, 171

shattering, 41, 241
coefficient, 55
witness, 241

shortest-distance algorithm, 108, 111,
115

all-pairs, 286
singular

value, 283–288, 344–346
value decomposition, see SVD
vector, 282–288, 291, 346, 347

slack variable, 71, 84, 191, 206, 214, 222,
248, 252

SMO algorithm, 68, 83, 85, 86
sort-by-degree algorithm, 229
SPSD, see symmetric positive semidefi-

nite
SRM, 27–29
stability, 233, 251, 256, 267–270, 277,

278, 372, 373
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bound, 268, 277
KRR, 275, 278
ranking, 277
regression, 278
SVM, 276, 278
SVR, 274

coefficient, 267, 268, 270–276
kernel, 263, 278

stable, 268, 273
standard deviation, 6, 86, 365, 367
standard normal

distribution, 289, 290, 292, 360, 361,
364, 374

form, 374
random variable, 289

state, 107, 313, 315
destination, 294
final, 107
initial, 107, 315
origin, 294
start, 315

state-action
pair, 332
value, 333, 334
value function, see function

stationary point, 349
stochastic

approximation, 326
gradient descent, 161, 177, 261, 263,

266
optimization, 327, 337

stochasticity, 318
strategy, 139

grow-then-prune, 197
mixed, 138, 139
pure, 138, 139

string, 107, 108, 112, 113, 119, 294, 295,
298–300, 303–305, 307–312

accepted, 295, 296, 304, 305
access, 299
counter-example, 300

distinguishing, 299, 301
empty, 106, 294, 295
finality, 299
kernel, 106
leaf, 300
negative, 296
partition, 299, 301
positive, 296, 306
rejected, 296, 309

structural risk minimization, see SRM
structure, 203
structured

output, 203, 204
prediction, 2, 183, 184, 203–205, 207

subgradient, 272, 273
subsequence, 119
subsequences, 106
substring, 106
sum rule, 362
supermartingale convergence, 328, 329
support vector, 67, 74, 162

machine, see SVM
networks, 83
regression, see SVR

SVD, 98, 99, 345
SVM, 8, 63–75, 82–87, 89–91, 94, 100–

102, 106, 115, 118, 119, 131,
137, 142, 143, 162–164, 166–
168, 176, 177, 191, 192, 200,
201, 205, 209, 213, 214, 222,
233, 252, 253, 255, 256, 267,
271, 276, 278

multi-class, 8, 183, 191, 203, 204,
206

ranking with, 8, 213, 214, 233, 234
regression, see SVR

SVMStruct, 205
SVR, 237, 245, 252, 255–257, 260, 261,

263, 267, 271, 274, 275
dual, 262, 264



412 INDEX

on-line, see OnLineDualSVR al-
gorithm

Huber loss, 264
on-line, 263
quadratic, 255, 256, 264

on-line, 266
stability, 274

target
concept, 12
values, 11

TD(λ) algorithm, 335, 336
TD(0) algorithm, 330, 331, 335
theorem

central limit, 367
Fermat’s, 349
Fubini’s, 49, 363
Mercer’s, 91
Radon’s, 43, 44
representer, 101
von Neumann’s minimax, 139, 174

transducer
acyclic, 108
composition, 108, 109, 115, 380
counting, 113, 114
inverse, 112
weighted, 106–109, 111–113

transition, 107–112, 114, 294, 295, 299–
301, 304, 306–308, 310, 315–
317, 322, 326

label, 107
probability, 315, 317–320, 325, 326

trigrams, 90
true positive rate, 225, 226, 232

uniform convergence bound, 17, 23
uniform stability, see stability
uniformly β-stable, see stable
union bound, 15, 362
update rule, 85, 169, 334

additive, 169

multiplicative, 169, 176

value iteration, 319, 324, see also Val-
ueIteration algorithm

ValueIteration algorithm, 320
variance, 6, 54, 70, 166, 282–284, 289,

290, 365, 366, 371, 377, 378
unit, 287, 288, 360

VC-dimension, 8, 33, 41
ensemble margin bound, 133
generalization bound, 48
lower bounds, 48, 49, 51

vector, 341
norm, 341, 344, 345
singular

left, 345, 346
right, 345, 346

space, 341, 342
normed, 374

von Neumann’s minimax theorem, 139,
174

weight function, 231, 235
Weighted-Majority algorithm, 147, 150–

152, 154, 156, 169, 175, see also
Randomized-Weighted-Majority
algorithm

Widrow-Hoff algorithm, 261
on-line, 263

Winnow
algorithm, 8, 147, 159, 168–171, 176
update, 169

WM algorithm, see Weighted-Majority
algorithm

Young’s inequality, 343
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